
Getting Started

Writing Scripts
with SML

in

TNTmips®

TNTedit™
TNTview®

S
M
L

S
C
R
I
P
T
S

page 2

Spatial Manipulation Language

Before Getting Started
This booklet introduces techniques for creating scripts in the Spatial Manipula-
tion Language (SML) in the TNT products. The exercises in this booklet intro-
duce you to concepts and techniques for writing powerful scripts for custom ma-
nipulations of the spatial data objects in your TNT Project Files.

Prerequisite Skills This booklet assumes that you have completed the exercises
in Getting Started: Displaying Geospatial Data and Getting Started: Navigating.
Please consult those booklets and the TNTmips Reference Manual for any review
of essential skills and basic techniques you need. This booklet also assumes that
you have at least a fundamental knowledge of one or more programming lan-
guages such as C, BASIC, or Pascal. You can begin to use SML even if you have
no programming background, but SML is a powerful language and yields the
most benefit in the hands of a good programmer.

Sample Data The exercises in this booklet use sample data that is distributed
with the TNT products. If you do not have access to a TNT products CD, you can
download the data from the MicroImages web site. In particular, this booklet
uses scripts in the LITEDATA / SML data collection, the CUSTOM, MACRSCR, and TOOLSCR

subdirectories under your primary TNT directory, and objects in the CB_DATA,
SF_DATA, SURFMODL, and EDITRAST data collections. Install the sample files to
your hard drive; you may encounter problems if you work directly with the
sample data on the CD-ROM.

More Documentation This booklet is intended only as an introduction to the
Spatial Manipulation Language. Consult the TNT reference manual, and espe-
cially the online SML Reference for more information.

TNTmips and TNTlite® TNTmips comes in two versions: the professional ver-
sion and the free TNTlite version. This booklet refers to both versions as
“TNTmips.” If you did not purchase the professional version (which requires a
software license key), TNTmips operates in TNTlite mode, which limits object
size, and enables data sharing only with other copies of TNTlite. SML is not
available in TNTatlas. All the exercises can be completed in TNTlite using the
sample geodata provided.

Keith Ghormley and Randall B. Smith, Ph.D., 31 October 2001
©MicroImages, Inc., 1997

It may be difficult to identify the important points in some illustrations without a
color copy of this booklet. You can print or read this booklet in color from
MicroImages’ web site. The web site is also your source for the newest Getting
Started booklets on other topics. You can download an installation guide, sample
data, and the latest version of TNTlite:

http://www.microimages.com

page 3

Spatial Manipulation Language

SML in the TNT Products
The Spatial Manipulation Language (SML) is a pro-
gramming language that lets you write scripts that
operate on the geospatial data objects in TNT Project
Files. SML scripts can be executed from custom
menus and icon bars, from an icon on your
computer's desktop, or even from the operating sys-
tem command line.

SML is a customization and design tool. With SML,
you can use TNT products for tasks beyond the pre-
defined processes found in the standard TNT menus.
You can create simple processing scripts, or com-
plete special-purpose products for a targeted private
market. You can even bundle your scripts together
with selected geodata objects in a Project File and
distribute the whole package as a turn-key
APPLIDAT (APPLIcation plus DATa).

MicroImages provides scores of sample SML scripts
to give you models to work from. You can examine
and adapt scripts ranging from simple processing
routines to complex APPLIDATs that contain hun-
dreds of lines of code. Your SML
scripts will be easy to modify and
enhance over the life of your
project. You can quickly
prototype and test pro-
gram features.

The exercises on pp. 4-18
introduce basic SML
concepts and scripting
conventions. Pages 19-27
illustrate specific program
techniques for different types
of geodata objects. The
remainder of the book
introduces advanced SML
development techniques:
building dialog windows;
movie scripts; APPLIDATs;
and Tool and Macro Scripts.

SML in an APPLIDAT

SML scripts are completely
platform independent; they
run without modification on
any computer that runs the
TNT products.

STEPS
� select Install Sample

SML Scripts from the
TNT products CD
installation menu

In later exercises, you will
access them in the /CUSTOM

subdirectories under your
TNT products directory.

SML in TNTedit

SML in TNTview

SML is available in TNTmips, TNTedit, and TNTview. In
addition, all forms of scripts in the TNT products use
constructs drawn from SML (with minor variations):

• queries and style scripts • APPLIDATs
• GeoFormulas • Tool Scripts
• CartoScripts • Macro Scripts

Refer to the Getting Started booklets Building and Using
Queries, Using CartoScripts, and Using Geospatial
Formulas for information about particular script types.

SML in
TNTmips

page 4

Spatial Manipulation Language

Run VIEWSHED.SML
The VIEWSHED.SML script along with its sample data
in VIEWSHED.RVC is contained on the TNT products
CD-ROM, and is also available on the MicroImages
web site. The script creates an output binary raster
object that shows which parts of its input elevation
surface are visible from the stream of points along
the input line elements. Many applications that deal
with line-of-sight surface characteristics can use the
techniques illustrated in this script.

Start SML and load the VIEWSHED.SML script by fol-
lowing the steps listed. Before you run the script,
scroll through it and survey its contents. Unless you
are unfamiliar with a programming language such
as C or BASIC, you should recognize statement forms
and programming structures.

Note that the hardest work of the script is done with
calls to various SML functions, such as
RasterToBinaryViewshed(). MicroImages is
constantly adding new functions to SML. Being
aware of what functions are available and understand-
ing what they do is essential to making the most of

SML. In addition to using the built-in
SML functions, you can write your own
SML extensions in C with TNTsdk, and
invoke external programs from within
SML scripts (see page 28).

STEPS
� select Process / SML /

Edit Script
� choose File / Open /

*.SML File and select
VIEWSHED.SML from the
LITEDATA / SML folder

� scroll through the script
for a first look at SML

� click [Run...] at the
bottom of the window

� when prompted for the
input raster “RIN”, select
ELEVATION from the CB_TM

Project File in LITEDATA /
CB_DATA

� for the input vector “V”,
select VROAD from the
VIEWSHED Project File in
LITEDATA / SML

� select a new Project File
and object for the output
raster “ROUT”

� use the display process
to view three layers:
CB_TM / ELEVATION, your
new output raster, and
VIEWSHED / VROADS

VIEWSHED.SML produces a binary raster (1’s
shown here in yellow) that indicates the
areas visible on an elevation surface
(shown here in pseudo-color) from a
stream of points along input vector line
elements (shown here in blue). Thus if the
line elements represent roads, then the
yellow areas define the vistas available to
travelers on that road.

page 5

Spatial Manipulation Language

Fundamentals of Scripting
An SML script can be anything from a single state-
ment to a long structured program with nested logi-
cal branching constructs and external program calls.
There are few formal structural constraints.

You can use white space in almost any way. SML
does not care if you use tabs or spaces to indent lines,
or if you leave blank lines, or even if you break a
statement in the middle and continue it on the next
line. Thus VIEWSHED.SML has a function call that is
broken in the middle of the argument list and con-
tinued on the next line:

MapToObject(georefR, xVector, yVector,

Rin, rCol, rLine)

In the same way, statements can be continued across
several lines. Select New from the File menu to clear
the SML window. Then type in the short
script illustrated here. The initial clear()
statement erases the contents of the Con-
sole Window. The var1 = 3 statement
assigns the value 3 to the variable var1.
The first print() statement outputs the
value of var1 to the Console Window.

Note that the next three lines contain a
single assignment statement: var1 = 5.
The final print() statement is likewise
distributed across four lines. Click
[Run...] to execute the script.

Of course the silly formatting in this ex-
ample is provided only to illustrate the
flexible formatting SML supports. In
your own scripts, use indents, spaces, and
blank lines to enhance readability and to
reflect the logical structure of the pro-
gram. If you happen to use illegal syntax or format-
ting, SML does not execute the script when you click
[Run], but posts an error message and puts the cur-
sor in the script at the point of the error.

STEPS
� clear the SML window by

selecting New from the
File menu

� type in the script
illustrated below, using
tabs or the space bar to
indent the text

� select Syntax / Check to
check the syntax

� click [Run] to execute the
script

The Console Window
shows the results of print()
and other text input / output
operations.

The SML Window is a
simple text editor that
provides access to function
lists and syntax checking.

This silly
formatting shows
SML’s flexibility

page 6

Spatial Manipulation Language

Variables and Constants
 Variables can be used for string, numeric, logical,
array, class, and object (CAD, raster, vector, raster,
region, and TIN) entities. Variables are created when
the script first mentions them. With the exception of
arrays and classes, they do not have to be declared
ahead of time. Names can be up to 100 characters
long and follow these conventions:

String: initial character is lowercase; must end in
‘$’ character. In the sample script on this page,
areaLabel$ is a string variable.

Numeric: initial character is lowercase; cannot end
in ‘$’. In the sample script on this page, r and
area are numeric variables.

Object: initial character is uppercase
example: GetInputRaster(R)

Logical: implemented as numerics where 0 = false,
and all non-zero values = true. Thus
done = 0;
if (condition) done = 1;
if (done) <statement>;

Array and Class names follow string and numeric
conventions. You must declare an array or a class
before using it. Enclose an array index in square
brackets:
array numlist[10];
class COLOR red;

numlist[1] = 256;

You can use the Insert Symbol window (Insert /
Symbol) to insert variables used previously in
the script, or to insert predefined constants
(whose values cannot be changed) . Use the Type
option menu to choose a variable type (or con-
stant) and view the associated list. Inserting
variable names rather than typing them can cut
down on typing errors. Your variable names do
not appear in these lists until you use the Check
Syntax operation (see page 16) or run the script.

STEPS
� select File / New to clear

the SML window
� type in the first two lines

of the script in the form
clear()
print()

and leave your cursor
between the parenthe-
ses of the print()
statement

� select Insert / Symbol,
choose pi from the list,
and click [Insert], [Close]

� type in the rest of the
script shown below and
click [Run]

page 7

Spatial Manipulation Language

Expressions and Statements
Expressions are constructs that reduce to some value.
Thus pi^2, 5.10, and R[i,j]/100 are all expressions.
Expressions can be used on the right side of assign-
ment statements and as arguments in function calls.

Statements can be simple or complex. A simple state-
ment can consist of an assignment, such as
area = pi * r^2;

A complex statement is bracketed by the keywords
“begin” and “end” in the form
if (condition) begin

function(r);
area = pi * r^2;

end

SML also lets you use braces (“curly brackets”) in-
stead of spelling out “begin” and “end”:
if (condition) {

function(r);
area = pi * r^2;

}

Conditional statements have the form
if (<condition>) then <statement>

else <statement>;

The else clause is optional, as is the “then”:
if (<condition>) <statement>;

It is good practice (though optional) to use the ter-
minator character (the semicolon, “;”) to mark the
end of a statement. Using a terminator also lets you
put multiple statements on a line,
separating them with semicolons.

The comment character (“#”) tells
SML to ignore the rest of the line. If
a comment character is the first char-
acter on a line, SML ignores the
whole line. You can also put a com-
ment on the same line with other
SML tokens, as long as the tokens
come before the comment.

Semicolons separate
multiple statements on a
line. A comment
character (#) tells SML to
ignore the rest of the line.

SML uses standard
notation for
comparison, math,
assignment, and
logical operations.
Most of the
operators you know
from C or BASIC
are the same as
those SML uses.
Please refer to the
Insert / Operator
list.

STEPS
� select File / Open /

*.SML File and select
LITEDATA / SML / EXPRESS.SML

� run the script
� change the area

threshold for the if
condition and run the
script again

page 8

Spatial Manipulation Language

Built-in Functions
The real power of SML lies in its rich function li-
brary that lets you create, read, and write geospatial
objects and subobjects in your TNT Project Files.
Standard math functions are included along with spe-
cialized functions for display, interface, and data ma-
nipulation. MicroImages is constantly enhancing
and expanding the SML functions to give you more
ways to work with your geospatial data.

Select Insert / Function to open the Insert Function
window, which lets you select functions and see their
usage format specifications. Click the Function
Group button to examine the available functions for
each category. As you scroll through the list of func-
tions, the definition in the lower pane changes to
show the usage of the current function. Click the
Insert button to copy the function into the SML script
window.

STEPS
� clear the SML window

with File / New
� select Insert / Function
� click the Function Group

button and browse the
function library for each
category

The Function Group
button opens a
scrolling list of
function categories.

The Insert Function window
offers a scrolling list of functions
in the top pane, and a function
definition in the bottom pane. If
you click [Insert], SML inserts
the highlighted function at the
cursor position in the SML
window.

page 9

Spatial Manipulation Language

Online Function Help
STEPS
� select All in the Function

Group text box
� scroll to the

GPSPortRead() function
� click the Details button
� click [Insert Sample]
� examine the newly-

inserted script lines in the
SML script window

The supporting documentation for SML functions
is incorporated into the process. First, the bottom
pane of the Insert Function window gives a simple
definition, showing each argument and its data type.
You can click the Insert button to copy a complete
instance of the function into the SML window.

For more information, click the Details button in the
Insert Function window. SML opens the Details On:
window that gives complete details, plus
a working section of code that shows how
the function works in a sequence of state-
ments. You can click the Insert Sample
button to copy the entire example into the
SML window.

Since SML functions are enhanced from
time to time, the Insert Function window
shows when the current
function was most re-
cently changed. Watch
for modifications that
provide optional new
capabilities to functions
you have used.

Click the Details
button to see a full
description of the
function's argu-
ments with an
example of its use.

The Create date tells
when the function was
introduced to SML.
The Modify date tells
when the function was
last updated. Some-
times optional
arguments are added
to a function to expand
its capabilities.

Click Insert Sample to
copy the entire section
of sample code into the
SML window

� close the Details and Insert Function windows
when you have completed this exercise

page 10

Spatial Manipulation Language

User-Defined Functions and Procedures

The simple example used in this exercise
finds the larger of two values.

Unless declared otherwise, all script variables
are global. This means that your functions
and procedures can use and modify variables
defined elsewhere in the script. Any global

variables and classes used in functions and proce-
dures must be declared before the function
definitions. In a large or complex script, this global
scope of variables may cause unanticipated conse-
quences. To limit the scope of a variable to a
particular function or procedure, you must declare

the variable as local variable within the func-
tion definition:

STEPS
� select File / Open /

*.SML File and open
LARGER.SML from the
LITEDATA / SML folder

� run the script

func funcname ([parmlist])
 { statement; statement; ...
 return expr }
proc procname ([parmlist])
 { statement; statement; ... }

SML allows you to define your own functions and
procedures that you can use to encapsulate sequences
of program steps that must be repeated in several
places in the script. User-defined functions must
return a value, whereas procedures do not. Of course

you must declare a function or a procedure
before you invoke it, using the form:

� select File / Open /
*.SML File and open
LARGER2.SML from the
LITEDATA / SML folder

� run the script

where x is a variable name. Local variables
can have the same names as global variables
elsewhere in the script, though this is not rec-
ommended practice. The script LARGER2
declares a local variable "a" within the defi-
nition of the function larger(a,b) and
assigns it a value of 6. In the main part of the
script, a global variable with the same name
is declared and assigned a value of 8. As the
result of the script illustrates, the global vari-
able is ignored and the local value is used
instead by the function.

local x;

page 11

Spatial Manipulation Language

Using Classes
STEPS
� clear the SML window

with File / New
� select Insert / Class
� scroll through the list in

the top pane of the Insert
Class window and select
class Color

A Class is a complex variable that consists of mul-
tiple members in the same way that a database record
consists of multiple fields. A class variable may have
any number of members and the members may be of
any data types, including other classes.

Class variables are designed for passing information
to and from complex functions. In many
cases, the members of a class variable are set
only by a function call, and so are read-only
from the script's point of view; they cannot
be given new values by assignment state-
ments.

A class must be declared with the class key-
word, in the form:

 class COLOR background

which declares background to be a class vari-
able of the Color type. Members of a class
are specified in the form name.member (just
as database values are specified in the form
table.field). For example, the class Color has
five members that can be assigned values with
statements in the form:

 background.red=50
 background.green=75
 background.blue=20
 background.transp=0

The name member of the Color class is used
only to pass red, green, and blue values to
the class variable from the standard refer-
ence file RGB.TXT. Thus

 background.name = "purple"

sets the RGB components of the class vari-
able background according to the definition
of "purple" in RGB.TXT . The name member
is write-only and cannot be read in other
parts of the script.

Class names and members
are case-insensitive.

page 12

Spatial Manipulation Language

Member Inheritance and Type Checking
STEPS
� select Insert / Class
� select POINT2D in the

top panel of the Insert
Class window, and
examine its members

� select POINT3D in the
top panel of the Insert
Class window, and
examine its members

� select XmPushButton in
the top panel of the Insert
Class window

� trace the line of class
and member derivation
shown in the bottom
panel

An important concept with classes is inheritance.
Class POINT2D represents the location of a 2-di-
mensional point; its members are the x and y coordi-
nates of the point. Class POINT3D is said to be
derived from class POINT2D. This means that a
class variable you declare as POINT3D not only has
its own member z, but also inherits members x and
y from class POINT2D. You can use inherited mem-
bers of a class in the same way you would its native
members.

The use of classes allows strong type checking. Thus,
when you invoke a function that wants a POINT2D
for a parameter, you can pass it any POINT2D (or
derivative class). But the function will refuse any
variable that is not a POINT2D. For example, you
could not pass such a function a Color class, because
Color is not a POINT2D. By contrast, since
POINT3D is derived from POINT2D, you could pass
a POINT3D or anything else derived from POINT2D
to a function that requires a POINT2D.

Follow the inheritance from Widget to
XmPrimitive to XmLabel to XmPushButton.

The XmLabel and XmPushButton
definitions show shared inheritance.

Series of derived classes
like those shown below are
used in SML to represent
the X Window / Motif
structures used to create
interface windows. All
interface components are
catagories of a basic
component called a widget.

page 13

Spatial Manipulation Language

Class Methods
Some classes include their own functions and pro-
cedures, which are collectively called class methods.
Class methods may be used to pass values into a
class or to perform some other operation related to
the class. Class methods are invoked using the form
name.method(), where name is the name of the class
variable.

Class VIEWPOINT3D represents the settings
for 3D rendering in a 3D View window. It
includes member ViewPos, a POINT3D class
variable that holds the x, y, and z coordinates
of the viewer. A class method is used to pass
the required values into the class:

Class VIEWPOINT3D vp;
Class POINT3D vpos;
vpos.x = 523487;
vpos.y = 1473245;
vpos.z = 2000;

vp.SetViewerPosition(vpos);

This class method is a procedure, and so does
not return a value.

The methods in the STRING class are all functions
that return either a string or a numerical value. Try
typing in and running the following example:

clear();
Class STRING txt$;
txt$ = "watershed";

char1$ = txt$.charAt(1);
print(char1$);

uc$ = txt$.toUppercase();

print(uc$);

The charAt(n) method returns the n'th char-
acter in the string (indexed with the leftmost
character at 0). The toUppercase() method
returns a copy of the string in all uppercase
characters.

STEPS
� select Insert / Class
� select VIEWPOINT3D in

the top panel of the Insert
Class window

� scroll the bottom panel
and examine the class
methods

� select STRING in the top
panel of the Insert Class
window

� scroll the bottom panel
and examine the class
methods

page 14

Spatial Manipulation Language

User Input
STEPS
� clear the SML window

with File / New
� type in the console

window prompt and
input statements
illustrated and [Run] the
script

� choose Insert / Function
� click the Function Group

button, select Popup
Dialog from the Function
Group window and click
[OK]

� choose File / Open and
select LITEDATA / SML /
POPUP.SML and [Run] the
script

The simplest type of user input and output uses the
console window. You can print prompt strings and
capture user responses using the print() and input$()
functions. The console input code is simple for the
author of the script, but console prompts may be
missed by an inattentive user.

clear(); print("Enter your name:")
name$ = input$()
print("Your name is: ",name$)

Popup dialog windows offer more flexibility and at
the same time are less likely to confuse the user. SML
includes predefined functions in the Popup Dialog
function group that open dialogs for input of numeric
or string values, yes-no responses, and display error

messages. Where required, the
function parameters include a
prompt string that you can use to
explain what value or response
should be entered by the user.

You can also build your own dia-
log windows to provide a
consistent interactive interface
for your script. These windows
can include push buttons, menus,

lists, and other
components that
you are familiar
with in the
TNTmips user in-
terface. Samples
showing how to
created SML dia-
log windows are
included later in
this booklet.

The popup dialog boxes
display a default value if you
use one in the function call.

page 15

Spatial Manipulation Language

Loops and Branches
Implied Loops. When SML sees a raster object vari-
able on the left side of an assignment statement, it
executes an implied loop, evaluating the right side
of the statement and assigning the result to each cell
in the left-side raster object:

R = R * scale # multiplies each cell in R

For each statements for raster and vector objects
have the forms:

for each Rastvar statement
for each Rastvar[lin,col] statement
for each Rastvar in Region statement
for each vector_element[n] in V statement

In the raster (R) notation, lin and col indicate the
line number and column number of the "current po-
sition" in the raster for access within the processing
loop. In the vector (V) notation, vector_element can
be "point", "line", "poly", or "node". The n is op-
tional and can be omitted. If given, the variable n is
used as the loop counter.

For statements have two forms:

for var=expr to expr statement
for var=expr to expr step expr statement

Loops using "for" statements allow a script
to operate on portions of a set of values (ras-
ter cells, array values, element numbers)
specified by ranges, or to "step" through a
set of values.

While. Be careful of "while" loops.

while (condition) statement

As long as the loop condition tests true, the
loop continues. If the condition never be-
comes false, you get an infinite loop.

a = 0;
while (a <= 360) {
 print (a, sin(a/deg));
 a = a + 1;
}

NOTE: the "for each"
keyword sequence also may
be written as one word:
"foreach". This version of
SML does not support
nested "for each" com-
mands.

The break statement is used
to exit a loop before the loop
might otherwise terminate. It
is often used in a conditional
test inside the loop. The
break statement in this
example prevents divide by
zero.

Notice that as with all computer systems,
some operations yield very small errors in
floating point values (1 / 5 yields
0.20000000000000001).

STEPS
� select File / Open and

select WHILEFOR.SML from
the LITEDATA / SML folder

� run the script
� change the while

condition and run the
script again

� change the step value in
the for loop and run the
script again

page 16

Spatial Manipulation Language

Script Development and Checking
STEPS (not for Macintosh)
� keep the script from the

previous exercise open
� open another instance of

the SML window with
Process / SML / Edit
Script

� move the new SML
window so that it does
not obscure the first one

� select the code for the
"while" loop from the
WHILEFOR script

� use the Copy and Paste
selections on the Edit
menus to copy the
selected section to your
new script

� remove the closing "}"
character from your new
script

� choose Syntax / Check
for the new script

� choose File / Exit for the
new script window and
do not save changes

The easiest way to develop an SML script is to adapt
the sample scripts distributed with the TNT prod-
ucts to your own needs. You can open two SML
script editing windows side by side and use the copy
and paste menu functions to copy sections of code
from the MicroImages sample script into the script
you are developing. If you are running under a Win-
dows operating system, the SML cut and paste
functions use the Windows clipboard, so you can also
cut and paste text between the SML editor and an
editor running under Windows.

The Check option on the Syntax menu checks your
script for syntax errors. The types of errors that can
be found include missing function parameters, func-
tion and variable misspellings, and unclosed
parentheses and loops. The syntax checker cannot
detect logical errors such as infinite loops or incor-
rect input values.

If the syntax checker finds problems in your script,
the message line at the bottom of the SML window

displays an error message and places the cur-
sor at the end of the last part of the script that
the checker could correctly interpret. Often
the error immediately follows the cursor lo-
cation, but if the error involves nested
processing loops, you may need to search
some distance past the cursor to find the prob-

lem. You should use the syntax checker
frequently as you develop your script.
Check each small portion as you write it.
It is easier to find and fix errors as you go
along rather than waiting to fix all of the
errors in a long complex script. Checking

syntax also updates
the lists of variables
available for inser-
tion from the Insert /
Symbol window.

NOTE: The MacOS does not let
you open two instances of the
same process, so you cannot use
this method to copy and paste
between SML scripts on the Mac.

page 17

Spatial Manipulation Language

Toolbars and the SML Custom Menu
You can select and run any SML script without open-
ing the SML editor window by selecting SML / Run
from the Process menu. You can also assign SML
scripts to icons on custom toolbars. Use the Toolbar
Editor window to create or select a toolbar, set a
horizontal or vertical orientation, and set up label
positions. Then select one or more SML scripts and
edit the Label and Tooltip text boxes as illustrated
to establish the interface text for each. Press the
Icon button to select an icon for each script. The
steps in this exercise create a new SML toolbar with
two script icon buttons.

Sample SML scripts provided by MicroImages also
can be run from the Custom menu cascade if you
have installed them from the TNT products CD. (If
your TNT menu bar does not have a Custom menu,
run the TNT setup program from the CD and select
Install Sample SML Scripts.) The setup program
creates a /CUSTOM subdirectory and copies the sample
*.SML scripts to it. Thereafter, any new scripts that
you put into the /CUSTOM directory also become avail-
able on the Custom menu.

STEPS
� choose Toolbars / Edit in

the TNTmips main menu
� press [New] in the

Toolbar Editor window
� edit the Name field to

read "SML Toolbar"
� select Horizontal from

the Orientation menu
� click [Add SML...]
� select BOXCAR2.SML

� click [Icon...] and select
an icon

� repeat the previous two
steps for VIEWSHED.SML

� click [OK] to finish

Use the Toolbar Editor to
add BOXCAR2 and
VIEWSHED icons to a
new SML toolbar.

The Custom
menu
cascade lists
the scripts in
the / CUSTOM

subdirectories
created by
the TNT
installation
process.

page 18

Spatial Manipulation Language

Script Objects and Encryption
So far you have worked with SML scripts that have
been saved as independent text files with the SML
file extension. These are 1-byte text files that can
be opened with any text editor. If you do edit a script
file with another editor, be sure to save it with the
SML extension.

An SML script also can be saved as a script object
in a Project File (use File / Save As / RVC Object).
This allows you to put input, output, and script ob-
jects all in the same file if you find this more
convenient. Another advantage to storing a script
in a Project File is the ability to encrypt a script
object. You may want to distribute your scripts to
others but still protect your development efforts and
proprietary algorithms. An encrypted script object
can only be run by authorized TNTmips users and
cannot be viewed or edited by anyone (including the
creator; always keep an unencrypted copy of the
script for reference or further development). You
can allow an encrypted script to be run by any
TNTmips user or limit its use to computers with a
specific software license key number. You can also
choose to require a password for running the script.

STEPS
� select File / Open / *.SML

File and choose /LITEDATA /
SML / BOXCAR2.SML

� select File / Save As /
RVC Object (Encrypted)

� create a new Project File
and SML object as
prompted

� select an encryption
password in the
Encryption Options
window

� if you are not using
TNTlite, use File / Open
to select your encrypted
script (it shows only an
encryption message)

NOTE: A license key is
required to run an encrypted
SML script object. Thus
encrypted scripts cannot be
run in TNTlite.

Use the Save As / Encrypted option to create an
encrypted copy of the script in a Project File. If
you open an encrypted script in the SML window, it
shows only an encryption message. IMPORTANT:
Always keep an unencrypted copy for editing.

page 19

Spatial Manipulation Language

Raster Objects
STEPS
� select File / Open and

select RATIOSCL.SML from
the LITEDATA / SML folder

� study the script structure
and statement syntax

� run the script
� when prompted for a

raster for N, select
PHOTO_IR from the CB_TM

Project File in LITEDATA /
CB_DATA

� select RED from the CB_TM

Project File for input
object D

� create a new raster
object for RS

� for this exercise and
those on the following
pages, use the Display
process to display the
input object(s) and the
new object created by
the script

A full set of raster functions let your SML scripts
read, create, and analyze raster objects. You can write
mathematical expressions to compute values for a
new raster object from one or more input rasters or
use various higher-level SML functions to create new
raster values.

Use the GetOutputRaster() and CreateRaster() func-
tions to create new raster objects. When you create
an output raster object, give some thought to your
choice of the specifics of its data type: binary, inte-
ger, signed, unsigned, and floating point. For
example, if your script's computations can create
negative output cell values, be sure to specify a signed
data type. Several functions provide access to raster
subobjects.

The RATIOSCL sample script is designed to compute
the ratio between two raster image bands (assumed
to be 8-bit unsigned rasters) and rescale the result to
the 8-bit unsigned data range for the output raster.
The raw ratio values could range from .004 (1 / 255)
to 255, and separate scaling is applied for ratios less
than or greater than 1. The scale factor for the upper
range is based on the maximum ratio value for the
entire image area. This necessitates
storing the raw ratio values in a tem-
porary floating point raster,
computing the
scale factor from
the maximum ra-
tio value, then
computing the
rescaled values
and writing them
to the final output
raster.

Scaled ratio raster (left) produced
by RATIOSCL.SML. from CB_TM / RED

(center) and CB_TM / PHOTO_IR (right).

page 20

Spatial Manipulation Language

Vector Objects
A growing list of functions support vector object
creation, reading, writing, and manipulation. Look
for vector function definitions in the Vector, Vector
Network, and Vector Toolkit groups.

A simple script illustrates basic functions for input,
output, and one of the vector combinations:

GetInputVector(Voperator);
GetInputVector(Vsource);
GetOutputVector(Vor);
Vor = VectorOR(Voperator, Vsource);

Vector extraction operations are supported by simi-
lar functions. For an example, refer to the sample
script CUSTOM / VECTOR / VECEXTR.SML.

SML also supports more complex interaction be-
tween vector objects and objects of other types. You
have already seen VIEWSHED.SML (page 4). Another
example is provided in CUSTOM / FOCAL /
VECFOCAL.SML, which uses points in a vector object
to select cells in a raster object and applies the
FocalMean() function to each of those cells in turn.
Open that script and observe how the vector coordi-
nates (x=V.point[i].Internal.x) are translated into map
coordinates using the georeference function
ObjectToMap(V,x,y,georefV,xVector,yVector), and
how MapToObject(georefR, xVector, yVector, R,
rCol, rLine) finds the raster cell corresponding to the
map coordinates.

Vector functions are listed in
the Vector (above), Vector
Network, and Vector Toolkit
function lists. The short

script
shown
above uses
VectorOR()
to combine
two input
vector
objects into
a single
output
vector
object.

STEPS
� select File / Open /

*.SML File and open the
script VECTCOMB.SML from
LITEDATA / SML

� run the script using for
input HYDROLOGY and
ROADS from CB_DATA /
CB_DLG

VectorOR() ➱

page 21

Spatial Manipulation Language

Using the Vector Toolkit
STEPS
� select File / Open /

*.SML File and open the
script VTOOLKIT.SML from
LITEDATA / SML

� study the script structure
and comments

� run the script using for
input DEM_16BIT from the
CB_ELEV Project File in
LITEDATA / CB_DATA

The functions in the Vector Toolkit function group
enable a script to modify elements in an existing vec-
tor object or add new elements to an object. To
modify an existing vector object, the script must first
initialize the vector toolkit for use with that object:

GetInputVector(V);
VectorToolkitInit(V);

[Editing operations with vector
toolkit functions]

CloseVector(V);

When you will be adding elements to a new output
vector object, toolkit initialization can be done when
the object is created. The second argument to the
GetOutputVector() function is an optional flag string
that can be used to set the topology level and to ini-
tialize the vector toolkit. For example, setting this
argument to "VectorToolkit,Polygonal" initializes the
vector toolkit and establishes polygonal topology for
the vector object.

The sample script VTOOLKIT.SML shows how some of
the vector toolkit functions can be used to create el-
ements in a new vector object. The script first opens
an input raster and finds its geographic
extents and the map position of the cell
with the highest value. The script then cre-
ates a new vector object with implied
georeference to the input raster object, adds
a point element at the position of the maxi-
mum cell value, and draws a vector line
outlining the raster extents. The location
on this boundary line that is closest to the
maximum cell point is then found, and a
line is added connecting these two loca-
tions. The vector object is then validated
(to check topology and compute standard
attributes) and closed.

Raster DEM16_BIT and the vector object
created from it by the sample script.

page 22

Spatial Manipulation Language

CAD and TIN Objects
STEPS
� select File / Open /

*.SML File and open the
script CAD.SML from
LITEDATA / SML

� examine and then run
the script using raster
object HAYWARD from the
HAYWDEM Project File in
LITEDATA / SF_DATA

� open the script TIN.SML

from LITEDATA / SML

� study and then run the
script, using object
ELEV_PTS from the
SURFACE Project File in
LITEDATA / SURFMODL for the
input

A growing list of functions support CAD and TIN
object creation, reading, writing, and manipulation.
Sample script CAD.SML uses some of the numerous
CAD functions. The script uses a raster object as
input to define geographic extents and georeferencing
and creates a new georeferenced CAD object to
which several elements are added. A circle element
is drawn centered at the geographic center of the ras-
ter, then a line element is drawn from the center to
the circumference of the circle. Several box elements
are then added around the center point.

Sample script TIN.SML illus-
trates some of the TIN
functions. It uses the
TINCreateFromNodes()
function to make a new
TIN object from arrays of
node coordinates. The co-
ordinate arrays are created
in this case by reading the
coordinates of points in a
3D vector object. The
script also uses functions
to read the number of TIN
hulls, edges, and triangles.

page 23

Spatial Manipulation Language

Region Objects
STEPS
� select File / Open /

*.SML File and open the
script REGION.SML from
LITEDATA / SML

� study the script structure
and comments

� run the script using for
input the region objects
POLYREGION and RECTANGLE

from the REGION Project
File in LITEDATA / SML and
vector object ELEV_PTS

from the SURFACE Project
File in LITEDATA / SURFMODL.

You can also create and use region objects in SML
scripts. Region objects represent the outline of a
region of interest in operations on other spatial ob-
jects. SML functions in the Region function group
allow you to open and save region objects, check if
particular map coordinates lie within the region, and
perform region combination operations (AND, OR,
Subtract, and XOR). Several functions in the Ob-
ject Conversion group allow you to convert vector
and binary raster objects into region objects.

SML provides a simple way to use a region object to
restrict actions on a raster object. The simple con-
struction

for each RastVar in RegionVar {
[actions]

}

restricts the actions to raster cells that lie within the
region boundaries. This construction provides a sim-
pler alternative to using values in a binary mask raster
to control the operations.

The sample script REGION.SML illustrates the
use of some of the region functions. The
script opens two region objects and uses the
RegionAND() function to find the region
that is their intersection. This new region
is then used to find information about point
elements in the corresponding area of an
input 3D vector object. The script uses the
PointInRegion() function in a "for each"
loop to examine each point's coordinates
and select only those points that lie within
the region.

page 24

Spatial Manipulation Language

Database Objects
Sample script DATABASE.SML shows how to read at-
tribute values from a database. The syntax is an
extension of the TABLENAME.FIELDNAME construction
used in queries. In an SML script, the database field
reference must also specify the object, the database
subobject (a separate database is maintained for each
type of element in a vector or TIN object), and the
element number. If the field being read is a string
field, you must also append the "$" character to the
end of the field reference:

 string$ = Vect.poly[4].table.field$.

Functions to create and modify databases are found
in the Database function group. This group includes
functions to create new tables, to add or insert fields
in tables, to write new records in a table, and to at-
tach records to elements in the spatial object. Sample
script DB2.SML provides examples of these operations.
It creates a new vector object with points located at
the centroids of polygons in the input vector object,
creates a point database and table, and copies selected
attributes from each polygon to the associated point
element.

STEPS
� open the sample script

DATABASE.SML from the
LITEDATA / SML folder

� run the script using
object HSOILS from the
HAYWSOIL Project File in
the LITEDATA / SF_DATA

folder for input
� open the sample script

DB2.SML from the LITEDATA

/ SML folder
� run the script using

object CB_SOILSLITE from
the CB_SOILS Project File
in the CB_DATA folder for
input

DATABASE.SML refers to the
ACRES field of the SOILTYPE

table and the SOILNAME

field of the WILDLIFE table.

page 25

Spatial Manipulation Language

Converting Objects
STEPS
� open the sample script

SOILTEST.SML from LITEDATA

/ SML

� study the script, then run
it using objects in the
SOILTEST Project File in
LITEDATA / SML for input.
Use object SAMPPTS for
the "Points" and object
BOUNDARY for "Boundary"

� accept the default values
for the other parameters
requested by popup
dialog windows

Soil test
sample
points

Field
boundary
polygon

Computed soil pH
surface raster

Computed soil
organic matter
surface raster

One common rationale for creating an SML script is
the desire to automate a multi-step processing se-
quence that needs to be performed repetitively on a
number of different input datasets. The ability to
convert geospatial data from one type to another
within SML gives you great flexibility in designing
such a script. The standard TNTmips data conver-
sion processes lead the industry in support for data
types and functionality. Many of these conversion
processes are available as functions in SML in the
Object Conversion function group. Other special-
ized conversion functions in the Surface Fitting group
interpolate a raster surface from a vector or TIN in-
put object.

The SOILTEST.SML sample script automates the pro-
cessing of soil sample data and uses several types of
object conversion functions. The script reads a se-
ries of soil chemistry values stored in a database table
attached to input vector point elements representing
sample locations. For each type of value (soil pH,
organic matter content, and others) the script uses a
surface fitting function to create a surface raster. In
intermediate steps the script uses a vector polygon
representing the field boundary to create a blank ras-
ter to use as a mask for each surface. It also creates a
region from the
polygon and uses
the region to
write the value
1 into every
cell in the
mask raster
that lies in-
side the field
boundary.

page 26

Spatial Manipulation Language

Sample Script: Extract Polygons
STEPS
� choose File / Open /

*.SML File and select
from your main TNT
directory CUSTOM / VECTOR

/ TIGER.SML

� study the script structure
and comments

The sample script TIGER.SML provides an example of
vector and database processing in SML. It extracts
specified lines from input vector objects, writes them
into an output vector object, and transfers input line
attributes to output polygon attributes.

TIGER.SML was designed to process vector objects
imported from TIGER line files (2000 version) pro-

duced by the United States Census Bureau.
TIGER geodata is organized by county, and inte-
grates line geodata of many types (hydrology,
roads, administrative and census boundary lines)
into one vector data layer. Topological polygons
result from the intersection of these various line
types, but individual polygons have little geo-
graphic meaning. Area attributes are coded only
as attributes of the left and right sides of lines.
This characteristic of TIGER data makes it diffi-
cult to access and display areal information using
the raw vector objects.

Area boundary lines in the TIGER vector, such as
city and town boundaries, can be identified by the
inequality of particular attribute values on either
side of the line. This script finds city boundary
lines in one or more input TIGER vector objects
and writes each line to a new output vector ob-
ject. When all line elements for a particular city
boundary have been transferred, they intersect to
form a polygon in the output vector. If the cur-
rent line completes a new polygon, the city name
is read from the input line database, and a new
polygon database record containing the name is
created for the output vector. This script has been
used at MicroImages to process all of the 93
county TIGER vector objects for the state of Ne-
braska to produce a single statewide city polygon
object.

TIGER vector for a single
county with lines styled based
on their attributes.

Extracted city polygons for
the same county, with labels.

More about the extract polygon script is available in an online document at

http://www.microimages.com/relnotes/v65/smltiger.pdf

page 27

Spatial Manipulation Language

Sample Script: Network Routing
STEPS
� choose File / Open /

*.SML File and select
from your main TNT
directory CUSTOM / VECTOR

/ NETWORK.SML

� study the script structure
and comments

Sample result from the
network script. Farm
locations (circles) have been
styled in the same color as
the processing plant location
(squares) that is closest to it
along the road network.

More about the network script is available in an online document at

http://www.microimages.com/relnotes/v65/smlnz.pdf

The sample script NETWORK.SML shows a more com-
plex application of vector and database processing
in SML. It uses network analysis functions to ad-
dress the problem of efficient delivery of materials
from numerous dispersed locations (such as farms)
to a small number of destinations (such as process-
ing plants). The objective is to
determine the shortest network dis-
tance from each farm to each of the
processing plants, so each farm can
transport goods to the nearest plant.
A script is required to solve this
problem because the farm and
plant locations are represented
as points in vector objects sepa-
rate from the object containing
the road network.

For each farm and processing
plant, the script adds a node to
the roads object at the closest
point on the closest line. It
keeps track of the element
numbers of these two sets of
added nodes in a pair of arrays
so that network distances can
be associated with the correct
farm and plant. Network
analysis functions are then
used to compute the required set of distances, which
are stored in a new database table for the vector points
representing farms. For each farm point, there is
one attached record for each processing plant, show-
ing the minimum network distance.

page 28

Spatial Manipulation Language

Including Scripts and Running Programs
STEPS
� clear the SML window

with File / New
� select Insert / Operator
� scroll to the bottom of

the list in the Insert
Operator window to see
the SML preprocessor
directives

The SML process includes a set of preprocessor di-
rectives that are interpreted before all of the regular
script statements. Preprocessor directives allow you
to call up other scripts and to set up alternative script
modes.

You can have a script read and execute another SML
script by using the $include directive:

$include "another.sml"

The included script should be in the same directory
or Project File as the parent script. If you have sev-
eral scripts that need to use the same user-defined
function, the function definition can be in a separate
script that you "$include" in the other scripts.

While you are developing a complex script you might
want to have a "normal" mode of execution and a
"debug" mode that prints relevant information to the
console to help you identify possible points of fail-
ure. You can set up the debugging mode using the
directive

$define DEBUG

and bracket all of your sets of debug statements with
the following pair of directives:

$ifdef DEBUG
[series of print statements]

$endif

To run the script in the normal mode you would sim-
ply comment out the single $define statement,
leaving your debugging code in place for later use.

If your script requires manipulations and conversions
that are not supported in SML, you can use the run()
system function to call TNT processes or external
programs. For example, the current version of SML
does not include a function to convert a CAD object
to a vector object, so you might choose to have your
script run Prepare / Convert / CAD to Vector:

run ("c:/tnt/win32/convobjs cadtovec").

The SML preprocessor
directives can be inserted
using the Insert Operator
window:

$ifdef
$ifndef
$else
$endif
$define
$include

To find out the name of a
TNT process module (such
as “convobjs cadtovec” in
the example to the left), use
any text editor to open the
TNTMIPS.MNU file (which is in
your TNT directory).

When you use the run()
function as shown to the left,
SML waits until you close the
external program before it
goes on to the next
statement in the script. If you
set the run() function's
optional "wait" argument
value to 0, the external
program runs in the
background.

page 29

Spatial Manipulation Language

SML Layer in Display
STEPS
� run Display / Spatial

Data and open a New
2D Group

� click Add SML
� select the Script tab in

the SML Layer Controls
window and choose File
/ Open / *.SML

� select LITEDATA / SML /
ARROW.SML

� in the Coordinates panel,
use the Projection button
to change the coordinate
system to Universal
Transverse Mercator

� click [OK] to close the
Layer Controls window

� examine the
display, then
remove the SML layer

� add object _8_BIT

from the CB_COMP

Project File in LITEDATA /
CB_DATA

� click Add SML and
select LITEDATA / SML

/ NEATLINE.SML

� in the Coordinates panel,
set the coordinate
system to United States
State Plane 1927 and
the Zone to Nebraska
North

� click [OK] to close the
Layer Controls window

The Add SML icon button

The standard display process (Display / Spatial Data)
supports the use of an SML script as a layer, just as
a raster, vector, CAD, or TIN object can be a layer.
An SML script layer can use flexible cartographic
drawing functions to create special map symbols and
neatlines.

The sample script ARROW.SML is designed to draw an
oriented magnetic declination map symbol in a lay-
out. The SML layer should be alone in a group. It
determines the true north direction from the previ-
ous map group in the layout. Sample script
neatline.sml draws a neatline around a group, and

includes addi-
tional drawn
items that you
can turn on by
removing the
c o m m e n t
character (#)
from the rel-
evant script
statements.

The Coordinates panel lets you relate
the script layer to the map coordinates
of the other layers in the display.

The Script tabbed panel in the SML
Layer Controls window contains the
interface for editing and running scripts.

ARROW.SML draws
an oriented map
symbol that
shows true north
and magnetic
north directions.

page 30

Spatial Manipulation Language

A GeoFormula layer is a computed display layer that
uses one or more input objects to derive a result for
display. It gives you a way to apply SML manipula-
tions to objects “on the fly” rather than running
separate processes to prepare output objects for dis-
play. A GeoFormula layer contains a "virtual object";
it does not create an output object that is saved in a
Project File. Instead, it creates a display layer that
releases all its system resources (such as disk space
and memory) when you are finished with it.

For example, red and infrared bands of raster imag-
ery can be combined to produce a Transformed
Vegetation Index (TVI). Of course TNTmips offers
a simple process that produces a TVI output raster
object from selected input objects if you want to re-
tain the TVI output for other uses. But if you just
want to view the TVI result and do not care to keep
the output object, you should use a GeoFormula dis-
play layer.

A GeoFormula script can be saved as a reusable file.
A GeoFormula layer can be combined with any num-
ber of other layers in the TNT display process to

create a complex visualization of
multiple geospatial objects.

The GeoFormula feature is prima-
rily provided for dynamic
visualization tasks in the display
process. You can also run a sepa-
rate GeoFormula process
(Interpret / Raster / Combine /
GeoFormula) to create permanent
output objects for other uses.

SML and GeoFormulas
A separate Getting Started
booklet is dedicated to the
topic of GeoFormulas. See
Getting Started: Using
Geospatial Formulas.

LITEDATA / GEOFRMLA /
BROV_UMN.GSF illustrates the
dynamic enhancement of
low-resolution TM imagery
with a high-resolution SPOT
image.

STEPS
� choose Display / Spatial

Data
� click Add

Geoformula / Quick-
Add Geoformula

� select LITEDATA / GEOFRMLA /
BROV_UMN.GSF

� for input, select three TM
bands from the CB_TM

Project File and the
SPOT_PAN image in the
CB_SPOT Project File, both
in LITEDATA / CB_DATA

page 31

Spatial Manipulation Language

Creating a Simple Dialog Window
STEPS
� select Process / SML /

Edit Script
� choose File / Open /

*.SML File and select
DIALOG1.SML from the
LITEDATA / SML folder

� run the script
� study the script sections

that define the different
parts of the Hello World
dialog window

� press [Close] on the
Hello World window

win1
Class: XmForm

winLabel
Class: XmLabel

closeButton
Class: XmPushButton

Widget hierarchy in Hello World window

For complex scripts that include multiple operations
requiring user input, consider creating a custom dia-
log window to control user interaction with the script.
The SML functions in the Widget function group
provide access to the Motif widget set, which is used
to create all of the windows in the X Windows ver-
sions of the TNT products.

A dialog window con-
sists of a parent widget
that contains other com-
ponent widgets. Each
widget type is a separate class in X and in
SML. Sample script DIALOG1.SML creates
and opens a very simple dialog window
that displays a label string and has a Close
button. Each of these components is a
separate widget contained in an XmForm
widget. An XmForm widget lets you
place its "children" (contained widgets)
using a simple relative positioning
scheme. Each widget can be attached to
another widget on its top, bottom, left, and
right, and you can specify an offset value
(in screen pixels) for each side as well.
In this example the label widget (class
XmLabel) is attached to the form on its
top, left, and right sides. The Close But-
ton (class XmPushButton) is attached at
its top to the label widget and on the left
and right sides to the form. The form wid-
get automatically resizes to
accomodate all of the contained wid-
gets.

You can create a scrolled window us-
ing the XmScrolledWindow container
widget in place of XmForm or orga-
nize child widgets into a grid using an
XmRowColumn container widget.

page 32

Spatial Manipulation Language

Using Widgets To Build Dialog Windows
The role of the Close button in the DIALOG1 script is
defined by registering a callback with the widget
using the WidgetAddCallback() function. A callback
serves as a pointer to a function or procedure that a
widget calls in response to one or more events. An
XmPushButton has an ActivateCallback class mem-
ber available to register the callback to be activated
when the button is pushed. In this example, activat-
ing the Close button calls the OnClose procedure
defined at the beginning of the script.

Sample script DIALOG2.SML creates a more complex
dialog window that uses a variety of additional wid-
get types, including a field for entering a numeric
value, a frame, a separator line, and two option
menus. The buttons at the bottom of the window
use a different widget class than the button in the
previous script. They are instances of class
PushButtonItem, which can be used for either text
buttons or icon buttons. Text buttons must be placed
in a button row, a specific type of XmForm, and icon
buttons must be placed in an XmRowColumn wid-
get. You don't need to use the WidgetAddCallback()
function to define the action of a PushButtonItem;
the function that defines the item requires the name
of the callback function or procedure as one of its
arguments. The unit option menu widget also uses
the latter method to define the procedure called when
the unit is changed.

STEPS
� choose File / Open /

*.SML File and select
DIALOG2.SML from the
LITEDATA / SML folder

� run the script
� in the dialog window

opened by the script,
enter a value in the Enter
Area Value field

� choose an input area unit
from the upper unit menu

� choose an output area
unit from the lower unit
menu

� Press the Convert button
� study the script sections

that define the different
window components and
actions

� click [Close] when you
are finished working with
the dialog window

NOTE: Script DIALOG2.SML

was written to use a wide
variety of widget types, not to
provide an example of good
window design or efficient
processing. A more efficient
design would omit the
Convert button and
recalculate the output value
when any of the user settings
changed.

PushButtonItem in
XmForm button row

XmSeparator

XmOptionMenu

XmLabel

PromptNum
(includes
label)

XmLabel

XmFrame
with child
XmForm

Widget classes used to create the Area Unit Conversion dialog window

XmForm
(dialog window)

page 33

Spatial Manipulation Language

Creating and Using a Drawing Area
STEPS
� choose File / Open /

*SML File and select
DIALOG3.SML from the
LITEDATA / SML folder

� run the script
� study the script sections

that define the different
window components and
actions

� click [Close] when you
are finished working with
the dialog window

Filled
rectangle

[FillRect()]
Filled circle

[FillCircle()]

Circle [DrawCircle()]

In some instances you may want to design a dialog
window that incorporates a graph created from your
input data or from the process output, or some other
graphic. Numerous functions in the Drawing func-
tion group allow you to draw lines, geometric shapes,
and text, and to set color and other style characteris-
tics. To utilize these functions you must include an
XmDrawingArea widget in your dialog window.

The DIALOG3.SML script illustrates how to set up and
use a drawing area in a dialog window. When you
create the drawing area, you specify its height and
width in screen pixels along with the parent widget
and attachment settings. Placement of elements in
the drawing area is referenced to an X-Y coordinate
system with units of screen pixels and an origin (0,0
position) at the upper left corner of the drawing area.
When you use functions such as SetColor(),
SetLineWidth(), and DrawTextSetFont(), these set-
tings are used by subsequent drawing functions until
you call the relevant "Set" function again to change
the setting. These settings are stored in a structure
called a graphics context, which is created by the
function CreateGCForDrawingArea(). The GC must
also be activated by the ActivateGC() function be-
fore it can be used.

If your dialog window is covered by another win-
dow and then exposed again, regular Xm widgets
are redrawn automatically. If you use a drawing area,
however, your script must explicitly handle this
event. You must add an ExposeCallback to the call-
back list of your drawing area widget. This callback
is triggered automatically when the window is
opened or otherwise exposed. All of the drawing
instructions must be placed inside the callback pro-
cedure so that drawing is triggered by any expose
event. A graphics context requires an active win-
dow, so the GC must also be created and activated
within the callback.

Text (rotated)
[DrawTextSimple()]

The DIALOG3.SML script uses a
drawing area widget to draw
(in order) a filled white
rectangle, a filled red circle,
a yellow circle, and a simple
text string. The script for the
Raster Profile Tool Script,
described on a later page,
includes a more complex
example of the use of a
drawing area.

page 34

Spatial Manipulation Language

Creating a View in a Dialog Window
STEPS
� select File / Open /

*.SML File and open
LITEDATA / SML / VIEW.SML

� run the script using as
input raster _8_BIT from
the CB_COMP Project File
in LITEDATA / CB_DATA

� select View / Close to
close the window

A dialog window created by an SML script can dis-
play input or output objects in a view. The
GroupCreateView() function is used to create the
view widget to display a geodata group within the
parent dialog. Other functions in the Geodata Dis-
play, Geodata Display Group, Geodata Display
Layout, and Geodata Display View function groups
allow you to set up a group to display, to add ob-
jects, and to access coordinate and scale information.

Sample script VIEW.SML shows the basic steps re-
quired to open a view window of a group and
display an input raster. Sample script BOXCAR2.SML

creates a more complex dialog window incorpo-
rating a number of other widgets in addition to the
view.

� select File / Open /
*.SML File and open
LITEDATA / SML /
BOXCAR2.SML

� run the script, selecting
for input rasters RED,
GREEN, and BLUE from the
CB_TM Project File in
LITEDATA / CB_DATA

� press [Process] on the
Boxcar Classification
window to run using the
default values

� study the script to see
how the various window
components are
constructed and how
actions are controlled

Sample script
BOXCAR2.SML

provides a
more complex
example of a
dialog window
incorporating a
view.

By default, a
view widget
includes the
standard
menus, basic
toolbar, scale
/ position line,
and status
line. A createflag$ parameter of the GroupCreateView()
function allows you to eliminate selected window
elements if you wish. For example, the Boxcar view
does not have a Scale / Position line or status line.

page 35

Spatial Manipulation Language

Coordinate Systems in Views
STEPS
� select File / Open / *.SML

File and choose /LITEDATA /
SML / PTCOORD.SML

� run the script
� left-click in the window to

place the point tool
� right-click to view

coordinates in the
Console window

� try various point locations
to see how the different
coordinate types vary

� study the script to see
how the coordinate
transformations are
performed

� Close the Find Point
Coordinates window
when you are finished

Previous exercises have discussed SML functions
that use an object's georeference information to con-
vert position information between object coordinates
(such as raster line and column numbers) and map
coordinates. When you display spatial objects in a
view within a dialog window, several other coordi-
nate systems come into play. Sample script
PTCOORD.SML will help you explore these coordinate
systems and illustrates the resources available to
convert between them. The script displays a preset
raster (with UTM coordinates) and vector object
(with latitude/longitude coordinates) and provides a
point graphic tool with which you can select a posi-
tion. When you apply the tool (right-click), the point
position is reported in the console window in vari-
ous coordinate systems.

A graphic tool used in a view returns posi-
tions in view coordinates. For a single group
view, view coordinates are the group map
coordinates. The group coordinate system
is determined initially by the georeference
of the first layer added to the group, but can
be modified by a script by resetting the Pro-
jection class for the group. Screen
coordinates are the coordinates of the draw-
ing area of the view (in pixels), where the
obejcts are actually displayed. If you want
the script to draw additional features into
this drawing area, the drawing functions re-
quire screen coordinates. Each layer in the
view also has layer coordinates, which are
the object coordinates for the object in the
layer, as well as layer map coordinates. The Geodata
Display View function group includes functions to
translate between view
coordinates and screen,
layer, and layer map coor-
dinates.

page 36

Spatial Manipulation Language

Movie Generation Scripts
An SML script can create and record custom anima-
tions from your geospatial data. The sample script
in this exercise creates a movie file showing a series
of viewsheds computed from an elevation raster at
different points along a vector line.

Any animation consists of a gradually-varying se-
quence of static frames. A movie generation script
captures frames from the contents of one or more
view windows created by the script and copies each
frame into an output MPEG or AVI file. The movie
can therefore record any sequential change in the
view window(s) used to create the frames. Func-
tions in the Frame and Movie function groups are

used to set up the generic frame and movie
parameters, capture the view window con-
tents to a frame, and copy the frame contents
to the output file. You can also annotate each
frame with text or position markers using
functions in the Drawing function group.

Sequential changes in the View window can
be achieved in several ways. The script could

add and remove a series of pre-prepared lay-
ers to and from the view. It could also
modify the display parameters for a single
continuing layer. For vector objects, this
could involve basing the element styles on
a sequence of varying attribute values (such
as population in different years). The final
method is exemplified by the VSHEDMOV

script: the script itself computes the changes
from the supplied data and parameters. For
each frame in this movie, the script com-
putes the current viewshed and displays it
in the view window in yellow over a shaded-
relief rendering of the elevation model.

STEPS
� select Process / SML /

Edit Script from the
TNTmips main menu

� choose File / Open /
*.SML File and select
from your main TNT
directory CUSTOM / MOVIE /
VSHEDMOV.SML

� study the script structure
and comments

More about the movie generation scripts is available in an online document at

http://www.microimages.com/relnotes/v64/viewmarks.pdf

page 37

Spatial Manipulation Language

3D Simulation Scripts

Movies created from these sample SML movie scripts can be downloaded from

http://www.microimages.com/promo/smlmovies

An SML movie script can also use the 3D perspec-
tive rendering capabilities of TNTmips to record
custom 3D animations. A script can open a 3D per-
spective view window and change the viewing
parameters for each frame in the movie, allowing
you to move over, on, and around a 3D surface. SML
incorporates all of the functionality of the 3D Simu-
lation process in TNTmips, but expands your
control over the viewing parameters.

Class members and methods in the
VIEWPOINT3D class are used to manipulate
the settings for the 3D view. Each 3D view has
a viewer position and a position that the viewer
is looking at, the point where the current view is
centered. SML gives you complete control over both
positions. You can set viewer and view center posi-
tion coordinates explicitly for each frame, or move
either position a specified distance or direction rela-
tive to the previous position. Either position can be
rotated around the other. You can also set either
position and then specify an azimuth angle, eleva-
tion angle, and distance
to define the other.

The PATHCHT1 script
copies both 3D and 2D
views into each movie
frame. The viewer and
view center positions
are computed from 2D
vector lines that are
displayed in the 2D
view but hidden in the
3D view. The current
viewer and view center
positions are shown by symbols drawn into the 2D
portion of each frame after the views are captured.

STEPS
� choose File / Open /

*.SML File and select
from your main TNT
directory CUSTOM / MOVIE /
PATHCHT1.SML

� study the script structure
and comments

To record a movie from an
SML script, you must have
software capable of
encoding MPEG files (any
computer platform) or AVI
files (Windows platform
only). When recording
begins, a window opens to
allow you to select
compression options.

page 38

Spatial Manipulation Language

APPLIDATs
STEPS
� select Custom /

APPLIDAT / BENCHMRK

� click the Instructions icon
button on the toolbar

� press [Close] on the
Help window

� click the TNT Benchmark
icon button

� try some of the
benchmark processes,
then press [Exit]

� click the Exit button on
the toolbar

� select File / Open / RVC
Object in the SML
window

� select /LITEDATA / SML /
SMLLAYER.RVC / ARROW

� select File / Edit Toolbar
Icon

� in the Select Bitmap
Pattern window, click the
Set button and choose
the Advisor set from the
list

� select the "gold"
icon illustrated
and click OK

� click [Yes] to
confirm your choice in
the Verify dialog box

Benchmark APPLIDAT
toolbar

You can use SML to create self-contained, turnkey
geospatial application products call APPLIDATs. An
APPLIDAT can include an SML script or a series of
scripts along with the geospatial data to be processed.
Since data and scripts are bundled, they are loaded
together automatically when the APPLIDAT is run.
There is no need for the user to navigate and load
the data manually. An APPLIDAT is therefore ideal
for providing data with custom processing applica-
tions to users who are not familiar with the TNT
interface.

An APPLIDAT includes one or more SML script
objects in a TNT Project File that has been renamed
with the .SML file extension. Users can run an
APPLIDAT by double-clicking on the file or by us-
ing a desktop shortcut. (As shown by this exercise,
TNTmips users can also run an APPLIDAT from the
Custom / APPLIDAT menu.) Running an
APPLIDAT launches TNTview (with the standard
interface hidden) and opens a custom toolbar with
an icon for each included script. Icon buttons to open
the standard TNTview and to Exit the APPLIDAT
also are included automatically. You can write the
component scripts to use data stored in the same SML
Project File or in an accompanying standard Project
File in the same directory.

When a script object is created in a Project File, TNT
automatically assigns it a default icon subobject,
which you may edit or change for a different icon.
When the APPLIDAT is launched, script icon but-
tons are added to the toolbar from the left in
alphabetical order of the script names. If your
APPLIDAT includes several scripts that should be
run in a defined order, name the scripts so the alpha-
betical order of their names follows the defined
processing sequence. A script object's description
is used automatically as the ToolTip for its icon but-
ton.

ExitTNTviewInstructions

TNT Benchmark SML script

page 39

Spatial Manipulation Language

Providing APPLIDAT Instructions
SML lets you write APPLIDATs that have a discov-
erable interface. Your users need not be trained in
(or even aware of) the TNT products. All the in-
structions needed can be discovered the first time
the APPLIDAT is used, or easily rediscovered after
a lapse of time. Simply include in your APPLIDAT
a copy of the HELP.SML script from the BENCHMARK

APPLIDAT. This script creates a dialog window to
display HTML-formatted text and illustrations. The
HTML instruction set is stored as a subobject of the
HELP.SML script.

An instruction set is easy to create and maintain be-
cause you can use any editor that supports the HTML
format. Thus you can write your instructions in a
program such as Microsoft Word and use its Save
As... option to save the file in HTML format. To
associate your new help file with the APPLIDAT,
edit the HELP script in the SML script editor and se-
lect Add Text Objects from the File menu. When
you select your HTML file, TNT copies it to a
subobject of the script.

STEPS
� choose File / Open /

*.SML File in the SML
window

� select BENCHMRK.SML in
the Select File window

� select the Help script
object in the Select
Object window

� examine the script
structure and comments

NOTE: to open script objects
in an APPLIDAT Project File
(.SML file extension) in the
SML editor, you must use
File / Open / *.SML File.
When you select an SML file
that is actually a Project File,
a Select Object window
opens to allow you to select
a script object from within the
file.

You can copy this
Help script to
your own
APPLIDAT file
and use it directly
to create your
Instructions or
Help window. An
instruction set
won’t become
separated from
its APPLIDAT
because it is
bundled with the
other resources.

page 40

Spatial Manipulation Language

BIOMASS2 APPLIDAT
The BIOMASS2 APPLIDAT was written by
MicroImages to provide an example and prototype

of a turnkey APPLIDAT product. It il-
lustrates how an APPLIDAT can let the
user carry out a series of operations on
the input data and automatically pass
intermediate products along to the next

operation. In this example the application would
allow a farmer to determine crop biomass for any
designated area from a color infrared image, dis-
play farm assets over the image and biomass map,
and display a 3D perspective view of the image and
biomass map. The Instructions for the BIOMASS2
APPLIDAT provide a more detailed overview of
each operation.

The APPLIDAT file (BIOMASS2.SML) includes three
processing script objects: Biomass (Biomass Map-
ping), Pinmap (Asset Management), and View3D
(3D Simulation) that are designed to be run in that
order (note the alphabetical order of the script names
and the positions of their icons in the toolbar). In-
structions for the product are contained in the script
called About (note that the script itself contains the
HTML formatted instructions, rather than using an
HTML subobject). All of the input data are in the
APPLIDAT file. Spatial objects produced by the
APPLIDAT are stored and retrieved as needed in an
accompanying Project File BIOMASS.RVC.

After you have run the APPLIDAT, you should ex-
amine the structure of the component scripts. Each
script contains code to create its dialog window and
controls, callback procedures assigned to those con-
trols, and instructions for input and output of data.
You can use these as models in developing your own
turnkey APPLIDAT programs.

STEPS
� select Support /

Maintenance / Project
File from the TNTmips
main menu and examine
the contents of
BIOMASS2.SML in the
Custom / APPLIDAT
folder in your main TNT
products folder

� exit from Project File
Maintenance and select
Custom / APPLIDAT /
BIOMASS2

� click the Instructions icon
button and read the
instructions

� click on the Biomass
Mapping icon button,
define an area to map,
filter the result, and
convert the result to a
vector

� exit from the Biomass
Mapping window

� run the Asset Mapping
and 3D Simulation
applications

� exit fromthe BIOMASS2
APPLIDAT when you are
finished

Biomass
Mapping

Asset
Management

3D
Simulation

Instructions

page 41

Spatial Manipulation Language

Tool Scripts and Macro Scripts
Tool Scripts and Macro Scripts are specialized forms of SML scripts that are
launched from an icon button in a View window and can automatically access and
operate on the objects in the view. You can create tool scripts or macro scripts
that enable any user to perform custom procedures on spatial data layers loaded
into the view. After you add a tool script or macro script, its icon button appears
on the toolbar of every View window across all TNT processes. And every View
window offers menu selections that let you easily add and delete Tool scripts and
Macro scripts (Options / Customize)

For the script writer,
macro scripts and tool

scripts provide a streamlined way to provide custom processing capabilities that
require visual interaction with the spatial data. To do this in a standard SML
script, you have to provide the code to create and manage the View window and
its contents. But because macro scripts and tool scripts are invoked from a View
window, most of that management is taken care of automatically, and you can
focus on coding the custom processsing itself.

Macro scripts and tool scripts:
• are executed from an icon button on a View window toolbar;
• can access features of the current view, such as layers, extents, projection, se-

lected elements, zoom factor, scale, and styles;
• can operate on objects in the current view or objects containing the same area;
• can add a newly-created layer to the view;
• can start an external program and provide it with data derived from the current

view.

A tool script invokes a drawing tool and/or a dialog window (defined by the script-
writer) that allow the user to interact with the spatial data in the view window.
For example, the user could outline an area or select particular elements to be
processed. A macro script does not allow such graphical interaction, but can be
set up with a drop-down menu that provides program options.

Tool scripts and macro
scripts are launched from
icon buttons on a View
window's toolbar.

page 42

Spatial Manipulation Language

Macro Script Setup
To add a macro script so it can be run from an icon on the View window toolbar,
choose Options / Customize / Macro Scripts from the View window in any pro-
cess. Making this selection opens the Customize Macro Scripts window. If you

want to add an existing script, click
on the Add icon button to open the
Select File window so you can navi-
gate to to the script and select it. To
create a new macro script, click on
the New icon button. A Query Edi-

tor window opens with a
default script containing a list
of predefined symbols that
you can use in the macro
script. The Query Editor win-
dow includes all the script-
creation and editing features
of the standard SML window.

Once you have created or
added the macro script, the Macro Script Properties window opens. This window
lets you choose an icon, indicate whether the script is launched from a simple
button or a menu button, set up the ToolTip for the icon button, enter menu items
if a menu button is used, and test your script. Choose a simple button to have your
tool script execute automatically without further input from the user. Choose a
menu button if you want drop-down choices presented when the button is clicked.
If Menu Button is chosen in the
Macro Script Properties window, the
Menu Choices text field becomes
active so you can enter the menu
choices needed for the script.

Enter the ToolTip you want directly
in the ToolTip field. This ToolTip
appears when the cursor hovers over
the macro script's icon in the View
window. The Test button at the bot-
tom of the window lets you run your
script without closing the custom-
ize windows. Click OK in the Macro Script Properties and Customize Macro
Scripts windows when you are done adding, developing, and/or testing your script.

Choose an icon, ToolTip and other
features in the Macro Script Proper-
ties dialog.

New Add
Sample macro scripts can
be found in the MACRSCR
subdirectory in your primary
TNT directory.

page 43

Spatial Manipulation Language

Sample Macro Script: Zoom to Scale
Several sample macro scripts are provided in the
MACRSCR subdirectory in your primary TNT direc-
tory. Study these samples to understand
how to structure your own macro scripts.

 The Zoom to Scale macro script lets the
viewer redisplay the View window at one
of several map scales selected from the
script button's dropdown menu. For proper
script function, the objects in the view win-
dow must be either georeferenced or
scale-calibrated.

The menu selections are not predetermined by the
Zoom to Scale script. When you install the script,
you are free to set up the menu choices with the range
of scale selections most appropriate for your data.
The script accepts scale input from the menu as ei-
ther map scale or ground dimensions. If the menu
entry is purely numeric, it is interpreted as the de-
nominator of the map scale fraction. For example,
12000 is interpreted as a map scale of 1:12000. If
the menu entry is in two parts separated by a space
(such as "1 mi"), the first part of the entry is inter-
preted as a ground dimension in miles. (This portion
of the script can be easily modified to accept dimen-
sions in kilometers or other
distance units.) The script then
performs the necessary calcula-
tions and sets the new map scale
for the View window.

The predefined macro script
variable MenuChoice$ is used
to represent the user's selection
from the macro script menu but-
ton. For numeric input, this
string must be converted to a numeric value using
the StrToNum() function.

When installing the Zoom to
Scale script, set up scale
menu choices that are most
appropriate for your spatial
data.

More about the Zoom to Scale macro script is available in an online document at

http://www.microimages.com/relnotes/v64/zoomto.pdf

page 44

Spatial Manipulation Language

Sample Macro Script: Snapshot
The Snapshot script is a simple example of a macro
script that processes data from a View window and
launches an external application. The script captures
a screen snapshot of the view window and exports it
to the image file format you have chosen from the
script button's dropdown menu. The script then
launches the application program that you have pre-
viously registered with your operating system to open
that file type.

The Snapshot script has been
written to create specific file for-
mats: JPEG, PNG, BMP, PCX,
GIF, TIFF, and ASCII files with
either TXT or DOC file exten-
sions. When you add this macro
script to a View window, you
must set up choices for the script
button menu from this set of for-
mats. The text for each menu
entry must exactly match the
character string expected by the
script, including case (for ex-
ample, JPEG rather than Jpeg).

The script initially saves the snapshot as a tempo-
rary color composite raster object. The bit depth of
the composite is determined by your computer's dis-
play settings. The script segment for each file format
performs a color conversion to the color depth ap-

propriate for that format prior to export.
The output file is automatically saved in
the same directory as the script, then the
file's associated application is launched.
These operations make use of a class vari-
able _context, which specifies the
internal context information for the script.
Class member _context.ScriptDir
specifies the directory in which the script
is found.

Saved snapshot of View
window with raster
background and several
vector overlays.

page 45

Spatial Manipulation Language

tool script buttons

macro script buttons

Tool Script icon buttons
appear to the left of any
Macro Script icon buttons on
the View window toolbar.

Tool Script Templates
To add a tool script to run from an icon button on the
View window toolbar, choose Options / Customize /
Tool Scripts from the View window in any TNT pro-
cess that has a View window. Making this selection
opens the Customize Tool Scripts window, which is
nearly identical to the Customize
Macro Scripts window discussed
previously.

To create a new tool script, click
on the New icon button to open
the Query Editor window, which
shows the tool script template.
The template lists a number of
predefined symbols and values
that you can use in any tool script.
The predefined values include the
X and Y coordinates of the screen
cursor within the view (in pixels)
and values that record mouse but-
ton actions.

Additionally, the tool script tem-
plate includes skeletal definitions
of functions likely to be used in a
tool script. These include func-
tions used the first time a tool is
activated; when the tool is destroyed; when the tool
is activated and deactivated; when the tool is sus-
pended (during redraw) and resumed (after redraw);
when the left, right, or middle mouse button is
pressed or released; when the cursor moves with-
out a button press; when the cursor moves with a
button press; when the cursor enters or leaves
the View window; and when the user presses a
key. To create your script, remove the comment
characters (#) to the left of each function defini-
tion you need and add code to specify the desired
action to be carried out by that function.

page 46

Spatial Manipulation Language

The point selection script (POINTSEL.SML) illustrates
how to set up a tool script that lets the user interac-
tively select elements from a vector object in the View
window. In this case the script selects the closest
point element when the left mouse button is pressed;
this action is controlled by the definition for the
OnLeftButtonPress() function. This simple script
merely selects the point, but the button press func-
tion could be expanded to use the selected point for

further processing, such as
writing the map coordi-
nates of each point to an
external file.

Because a toolscript is ex-
ecuted interactively from a
View window, all process-
ing is carried out by script
functions executed by
mouse actions or by ac-
tions carried out in dialog
windows created by the
script. The function defi-
nitions you provide for the
predefined function names
can call other functions
and procedures defined
elsewhere in the tool
script. In the point selec-
tion script, for example,
the OnLeftButtonPress()

function calls a previously-defined checkLayer()
function that checks to make sure that the active
group contains a layer, and that the layer is a vector
object. The OnInitialize function also calls a proce-
dure cbGroup() to identify the active group in a
multigroup layout. This code generalizes the tool
script for use in either a group view or layout view
window.

Sample Tool Script: Select Point
A number of sample tool
scripts are provided with the
TNT products in the TOOLSCR

subdirectory under your
primary TNT directory. You
can use components from
any or all of these scripts to
create the custom tool you
need for your specialized
application.

Tool scripts can include user-
defined procedures and
functions that are called by
other functions in the script.

page 47

Spatial Manipulation Language

Sample Tool Script: ViewMarks

More about the ViewMarks tool script is available in an online document at

http://www.microimages.com/relnotes/v64/viewmarks.pdf

VPTOOL.SML lets you pick a
viewpoint from the Viewpoint
List to center the view at that
location and scale.

The ViewMarks tool script (VPTOOL.SML) allows you
to record a list of position markers for the View win-
dow. A ViewMark records the map coordinates of
the current view center (in latitude/longitude) and
the map scale. Once the list is created, you can se-
lect a ViewMark and recenter the View window on
that location at the designated scale. ViewMarks are
particularly useful for layouts that cover a large geo-
graphic area, especially when the layout uses limited
map scale visibility to add and remove layers as you
zoom in and out.

The ViewMarks script creates a
Viewpoint List dialog window
that provides an interactive list
as well as buttons used to ini-
tiate script actions; there is no
graphic tool created by the
script. This dialog is created by
the OnInitialize() function. The
icon buttons on the window let
you add or remove ViewMarks
from the list and zoom to the se-
lected mark. Other push buttons
let you save the list to a text file,
open an existing viewpoint list
file, create a new list, or close
the window. Each of these but-
tons calls a separate function or
procedure defined in the tool script.

When you add a ViewMark, a prompt window opens
to let you name the mark. (The default name is the
zoom level and coordinate position). The ViewMark
names are stored in a list widget (class XmList). The
x-coordinate, y-coordinate, and scale values are
stored in separate numeric arrays.

page 48

Spatial Manipulation Language

Sample Tool Script: Raster Profile
The Raster Profile tool script (RASTPROF.SML) provides
a line tool that records and plots a profile of the ras-

ter cell values along a line drawn by the user.
The target raster for the profile must be the
active layer in the view, and x-y positions
for the values are recorded in raster coordi-
nates (column and line number). Although
the profile plot is the end result in this ex-
ample, the script can be modified to convert
positions to map coordinates, apply addi-

tional processing to the profile values, or write them
out to a text file.

A portion of the OnInitialize() function in the script
invokes a standard interactive line tool:

tool = ViewCreateLineTool(View);
ToolAddCallback(tool.ApplyCallback,

cbToolApply);

(The variable tool was previously declared as a
member of class LineTool.) The procedure
cbToolApply(), which acquires the profile, is
called when the tool is applied by a right-mouse-but-

ton press. This linkage is set up
by the second statement in the
excerpt above, which adds the
procedure name to the tool's
ApplyCallback list. This struc-
ture dispenses with the need for
a separate OnRightButtonPush
function.

The script also demonstrates
how the result of an action can
be shown graphically in a win-
dow created by the script. The
code that draws the graph axes,
labels, and profile is contained
in the procedure cbRedraw()
defined in the script.

page 49

Spatial Manipulation Language

Sample Tool Script: Area Statistics

More about the Area Statistics tool script is available in an online document at

http://www.microimages.com/relnotes/v64/polystats.pdf

The Area Statistics tool script (REGSTATS.SML) shows
how you can create a custom tool to let the user draw
a polygon in the view window, convert the polygon
to a region, and use the region to operate on another
object. In this example, the region is used for the
simple task of extracting statistics from a raster layer
in the view. But the script could be modified to per-
form many other functions, such as creating a mask
raster or extracting elements from a vector object.
The region operations are not restricted to layers in
the view; you can operate on any georeferenced ob-
jects that overlap the defined region.

This script operates on a raster object that is the ac-
tive layer in the view. In the example shown here,
the polygon is drawn on an image layer overlying
the active layer, which contains an elevation raster.
Using the region defined by the polygon tool, the
script computes the number of cells, number of null
cells, minimum, maximum, mean and standard de-
viation of the included raster values, and the area,
perimeter, centroid location, and surface area of the
region. (Statistics can be com-
puted for any type of grayscale
or binary raster, but not for com-
posite rasters or RGB raster
layers.) The statistics are shown
in a Region Statistics dialog
window created by the script.
The script can convert distance
and area values to the units se-
lected from option menus on the
window. The statistics can also
be saved to a text file.

page 50

Spatial Manipulation Language

Sample Tool Script: Region Statistics
The Region Statistics tool script (REGSTATP.SML)
demonstrates the design for a script that lets
the user select polygons from the view window,
creates a region from the selected polygons, and
uses the resulting region to perform an action
on another object. The example task for this
script is the same as for the Area Statistics tool
script: compute statistics from a raster layer in
the view. Like that script, however, you could
rewrite the cbToolApply() procedure to per-
form different types of operations on other
objects.

This script lets you select one or more poly-
gons from the top layer in the view (and checks to
make sure that that layer is a vector object with poly-
gons). Statistics are computed for the bottom layer
in the view; the script checks to make sure that that
layer is a grayscale or binary raster object. The Re-
gion Statistics window created by the script is similar
to the one used by the Area Statistics script, but in-
cludes push-buttons at the top that let the user

indicate whether the se-
lected polygon should be
added to or subtracted from
the region, and a button to
clear the region.

The Region Statistics script
invokes a standard point
tool with predefined mouse
button actions. A left but-
ton press places the point
tool, and a right button press
selects the enclosing poly-
gon.

More about the Region Statistics tool script is available in an online document at

http://www.microimages.com/relnotes/v64/regionstatistics.pdf

page 51

Spatial Manipulation Language

Sample Tool Script: Run Browser
The Run Browser tool script (URLS.SML) is an ex-
ample of a custom script that launches an external
application program. The script allows a user to set
up and use links between spatial data in a view win-
dow and sites on the World Wide Web. Links can
be made to cell values in a raster, or to specific at-
tribute values associated with
vector elements. One or more
URLs can be entered for each
value. Once links are set up,
the user can select an element
or cell in the view window,
choose the desired URL, then
have the script launch the default web browser, which
then goes to the desired web address.

To use the tool, left-click on the polygon or cell de-
sired, then right-click to confirm the select tool is
correctly positioned. The URL(s) associated with the
selected feature appear in the Select a URL window
that is created by the script. Choose the desired URL,
then click on the Launch
Browser button.

The associations between
URLs and element at-
tributes or cell values are
stored in a separate text file,
specified in the sample
script as URL.TXT. The text
file lists the name and de-
scription for each object
with URL links. The asso-
ciations in this sample tool
script refer specifically to CB_DATA / CB_SOILS.RVC /
CBSOILS_LITE, or BEREA / BERCRPCL.RVC / CLS_MAXLIKE.

More about the Run Browser tool script is available in an online document at

http://www.microimages.com/relnotes/v64/runbrowser.pdf

Turn on the Add button to set
up links, and the Scan button
to use existing links. To use
links in Scan mode, select
your target URL and click
[Launch Browser].

page 52

Spatial Manipulation Language

Sample Tool Script: Find Streets
The Find Streets tool script (STREETS.SML) illustrates
how a script can access database information and
perform specialized selection tasks. The script uses
a street name entered by the user to locate and high-
lights vector lines representing the street. The user
may enter all or part of a street name, and the tool

script displays a list of all
streets containing that search
text. When the user picks a
street from the list, the script
redraws the view at 1:30000

with all lines that form parts of the street highlighted
and centered in the View. If all the street's lines do
not fit in the View at 1:30000, the View is redrawn
at a scale that fully contains the lines.

The script uses the cur-
rent highlight colors for
selected and active ele-
ments (Options / Colors).
For this tool, the selected
street will have a uniform
appearance if both the
active and selected colors
are the same (yellow in
the window illustration).

The name of the town
and the zip code are also

provided in the list of streets found. The script as-
sumes there are not two separate streets in the same
zip code with the same name. If, however, it turns
out that the search name belongs to two different
streets in the same zip code (one Main Street, the
other Main Drive, for example), only the first en-
countered is listed but both are highlighted when that
selection is made.

More about the Find Streets tool script is available in an online document at

http://www.microimages.com/relnotes/v64/findstreets.pdf

STREETS.SML is coded to work
with specific geodata from a
sample atlas of France. You
must modify the script
before it will work with other
geodata and attributes.

The user enters a street
name and the tool script
finds it on the map.

page 53

Spatial Manipulation Language

Sample Tool Script: Flow Path
The Flow Path tool script shows how custom analy-
sis procedures can be performed on layers in the cur-
rent view using an SML Tool Script. The script uses
SML watershed functions that operate on an eleva-
tion raster (DEM) that must be the first layer in the
View window.

When the user launches the script, it first executes
watershed functions to create a depressionless ver-
sion of the DEM and a complete set of vector flow
paths. These derived features are required by subse-
quent script steps; they are stored as temporary ob-
jects and are not displayed in the view. The script
then opens a FlowPath and
Buffer Zone window and cre-
ates a graphic tool that allows
the user to place one or more
watershed seed points on the
DEM or on an overlying im-
age layer. Toggle buttons on
the window enable the user
to choose to compute and dis-
play:

• the upstream basin (area with flow toward the
seed point),

• the flow path downstream, and
• a buffer zone around the flow path.

If the user intends seed points to fall along a stream
course, they can turn on the Move Seed Point to Flow
Path toggle button. Each seed point is then moved
to the nearest precomputed flow path line before the
new flow path and basin are computed. The user
can place new seed points and repeat the analysis as
many times as desired, and save the computed vec-
tor objects.

More about the Flow Path tool script is available in an online document at

http://www.microimages.com/relnotes/v64/flowpath.pdf

The script also creates and
displays (in red) a vector
layer outlining the extents of
the DEM. If an overlying
image layer is larger than the
DEM, the user can use the
extents box to guide
placement of the seed
points. The extents box is
also used to automatically
clip buffer zones computed
from flow paths that intersect
the DEM boundary.

page 54

Spatial Manipulation Language

Sample Tool Script: FRAGSTATS

Once installed, a tool script
can be run from any view
window. So you can run the
Automatic Classification
process and immediately run
the Fragstats tool script on
part of the Class raster that
is shown in the Classification
View window.

More about the Fragstats tool script is available in an online document at

http://www.microimages.com/relnotes/v65/fragstats.pdf

The FRAGSTATS tool script (FRAGTOOL.SML) is an
example of a script that extracts spatial data from a
raster layer in the view and passes the data to an ex-
ternal application program for processing. The
FRAGSTATS program was developed by landscape
ecologists to compute a variety of statistics about
the spatial patterns of areas (patches) representing
different ecological habitat classes. The appropriate

input for the tool is there-
fore a class raster, one
that has a unique integer
value assigned to cells of
each category or class.
You can create class ras-
ters from multispectral
imagery using the Auto-
matic Classification or
Feature Mapping pro-
cesses in TNTmips.

The FRAGSTATS tool script provides a polygon tool
that lets the user select an area (created as a tempo-
rary region object) for calculating the landscape
statistics. When the tool is applied, the script writes
the class raster to a text file for use by the
FRAGSTATS program. Cells outside the region of
interest are given negative class values in the text
file, which is the FRAGSTATS convention for iden-
tifying cells that are outside the "landscape
boundary". The script then launches the
FRAGSTATS program in a DOS shell.
FRAGSTATS identifies homogeneous patches and
computes statistics for the individual patches and for
entire classes. The statistics are saved in a series of
text files.

A separate script for running
FRAGSTATS from the SML
process interface is also
available. FRAGSTAT.SML
can be found in your main
TNT directory under
/ Custom / General. This
script requires that you
provide both the class raster
and a binary mask raster to
define the area of interest.

page 55

Spatial Manipulation Language

Sample Tool Script: Command Parser

More about the Command Parser tool script is available in an online document at

http://www.microimages.com/relnotes/v65/fixcolor.pdf

Several of the tool scripts discussed previously cre-
ate a control window that allows users to execute
script actions using push buttons or other graphical
interface controls. The Command Parser tool script
(COMPAR.SML) demonstrates a script design that cre-
ates a "command line" interface for executing script
actions. The Command Parser window created by
the script includes a text field in which the user en-
ters predefined text commands. A procedure named
ParseCommand() associates each com-
mand string with a particular function
or procedure defined elsewhere in the
script.

This sample script was designed as a com-
mand-line equivalent to the graphical Color
Palette Editor in TNTmips. It allows a user
to create or edit a color palette by assigning
colors to particular cell values or cell value
ranges in a raster. The script uses a very small
set of commands (each one or two characters
long), some of which are accompanied by
numeric parameters. For example, the com-
mand string "pr,3,20,1" paints a range of cell
values from 3 to 20 with the color specified
by color index number 1. The index num-
bers and corresponding color values (R, G,
B, and Transparency values) are defined in a
text file, which for script access must be read
into an array using the command "b".

Although a graphical interface is easy to learn, ex-
perienced users can execute repetitive tasks more
quickly using a command-line interface. Tasks that
might require several mouse actions in a graphical
window can be executed using a single short com-
mand string.

Commands are included to
create a color text file from a
color palette in a project file,
or to create a color palette
from a text file.

The Command Parser
window created by the script
includes a field for entering
command strings and one
that displays process status
messages. An icon button
opens a Help dialog window.

Advanced Software for Geospatial Analysis
S
M
L

S
C
R
I
P
T
S

Voice: (402)477-9554
FAX: (402)477-9559

M icro Im a g es, In c .

email: info@microimages.com
Internet: www.microimages.com

11th Floor – Sharp Tower
206 South 13th Street
Lincoln, Nebraska 68508-2010 USA

MicroImages, Inc. publishes a complete line of professional software for advanced geospatial
data visualization, analysis, and publishing. Contact us or visit our web site for detailed
product information.

TNTmips TNTmips is a professional system for fully integrated GIS, image analysis, CAD,
TIN, desktop cartography, and geospatial database management.

TNTedit TNTedit provides interactive tools to create, georeference, and edit vector,
image, CAD, TIN, and relational database project materials in a wide variety of formats.

TNTview TNTview has the same powerful display features as TNTmips and is perfect for
those who do not need the technical processing and preparation features of TNTmips.

TNTatlas TNTatlas lets you publish and distribute your spatial project materials on CD-
ROM at low cost. TNTatlas CDs can be used on any popular computing platform.

TNTserver TNTserver lets you publish TNTatlases on the Internet or on your intranet.
Navigate through geodata atlases with your web browser and the TNTclient Java applet.

TNTlite TNTlite is a free version of TNTmips for students and professionals with small
projects. You can download TNTlite from MicroImages’ web site, or you can order
TNTlite on CD-ROM.

Index
APPLIDAT.....................................3,38-40
assignment statement..................................5
CAD objects..22
database objects.........................24,26,27
dialog windows, creating........................31-35
classes...11-13
custom menu..17
encryption..18
expressions...7
functions..8-10
GeoFormula.....................................30
including scripts.....................................28
loops (for, for each, while)..........................15

Macro Script..41-44
movie script....................................36,37
procedures..10
raster objects...19,25
region objects......................................23,25
SML layer...29
TIN objects...22
Tool Script..41,45-56
toolbars..17
variables...6
vector objects..............................20,21,26,27
widgets...31-35

Extract Selected Polygons

MicroImages, Inc. (402)477-9554 • FAX (402)477-9559 • 206 S. 13th Street, Lincoln, Nebraska 68508-2010 USA • info@microimages.com • April 2001

Sample SML Script

The tiger.sml script extracts city boundaries from TI-
GER / Line files that have been imported into TNTmips.
TIGER geodata is a digital map database used to sup-
port the United States Census Bureau’s census and sur-
vey programs. TIGER / Line geodata has a standard
vector and attribute database format that is the same
for each of the 3142 counties in the USA. This script
can be applied to any county TIGER file to extract and
create a vector object containing only city boundary
polygons and an attribute table of city names. All the
extensive additional graphical and tabular data in these
files is excluded from the new vector object. This much
smaller, special purpose vector object requires less storage and is significantly faster when used in a
display, to build an index, or to search.

This SML script demonstrates how to extract specified elements from vector objects based on attribute
information. This type of script is useful for imported vector objects such as DLG and TIGER data that
use standard tables, table relationships, and methods to attach attributes to elements that are duplicated
in thousands of files (where each file represents a different geographic location) as a way to store and
organize massive amounts of geodata. Many times it is impractical to view and/or use information
directly from these large files because they map many different features with vast amounts of attribute
information. Using all this data at once slows down the computer and takes focus away from the infor-
mation you want to convey. For instance, a well-designed electronic atlas requires that you use only
relevant geodata not only to get the best processing speed but also for design clarity. The knowledge of
how to create this type of script makes it possible to extract only the data that is specifically relevant to
your needs. Furthermore, you have the ability to split a complicated vector object into multiple inde-
pendent objects that can be used separately.
Finally, since you can use any number of
vector objects as input, the script shows a
fast way to obtain analogous elements and
attribute information from multiple files.

Result: 1 city boundary vector
object with three database tables
(polygon labels are turned on)

Input: 93 TIGER vector objects with
1860 database tables for line attributes

To extract city boundaries from TIGER files:
1. From TNTmips main menu click: Process / SML / Run...
2. Select file for SML script: tiger.sml
3. Input Tigers: select any number of TIGER vector objects

Add All icon

In this example, 93 separate TIGER /
Line vector objects for each of the 93
counties in the state of Nebraska
(660 Mb), each with 20 database
tables in the line elements database,
were used as input for the tiger.sml
script. In 10 minutes the script created
1 vector object (668 Kb) that has city
boundary polygon elements for the
whole state with three attribute tables:
City_Names, Polygon_ID, and
POLYSTATS.

Script for City Polygons (tiger.sml)

MicroImages, Inc. (402)477-9554 • FAX (402)477-9559 • 206 S. 13th Street, Lincoln, Nebraska 68508-2010 USA • info@microimages.com • April 2001

Sample scripts have been prepared to illustrate how you might use the features of TNTmips’ Spatial Manipulation
Language (SML). If possible, the full script is printed below for your quick perusal. When a script is too long to fit on
one page, key sections are reproduced below. The sample script illustrated can be downloaded from the SML script
exchange at www.microimages.com/sml/ftpsmllink/TNT_Products_V6.5_CD.

clear();
numInputs = GetInputVectorList(InputList,
”Input Tigers”);

if (numInputs <= 0) return;

GetOutputVector(Output,”VectorToolkit,Polygonal”);
CopySubobjects(InputList[1],Output,”GEOREF”);

Array xarray[1];
Array yarray[1];
numeric numpolys;
numpolys = 1;
Array records[1];
numeric numberofthem;
fieldname$ = “City_Names”;

db = OpenVectorPolyDatabase(Output);
tinfo = TableCreate(db, “CITY_NAMES”, “Created by
SML script”);

tinfo.OneRecordPerElement = 1;
TableAddFieldString(Output.poly.CITY_NAMES,
fieldname$, 40);

for i = 1 to numInputs {
SetStatusMessage(sprintf(“Processing vector %d
of %d\n”,i,numInputs));

linedb = OpenVectorLineDatabase(InputList[i]);
if (TableExists(linedb, “Geo_Names_P”) > 0) {
linevar = TableOpen(linedb,”Geo_Names_P”);
linetable = TableGetInfo(linevar);

numLines = NumVectorLines(InputList[i]);
for j = 1 to numLines {

SetStatusBar(j,numLines);

left = (InputList[i].line[j].Basic_Data.
FIPS_Pub55Pla_L);

right = (InputList[i].line[j].Basic_Data.
FIPS_Pub55Pla_R);

if (left != right) {

numPoints =
GetVectorLinePointList(InputList[i],
xarray,yarray,j);

VectorAddLine(Output,numPoints,
xarray,yarray);

}

if (NumVectorPolys(Output) >= numpolys) {
numberofthem= TableReadAttachment(linetable,

j,records);

string$ = TableReadFieldStr(linetable,
”Geographic_Name”,records[1]);

recordnumber = TableNewRecord(tinfo
,string$);

records[1] = recordnumber;

numberofthem = TableWriteAttachment(tinfo
,numpolys,records,1);

numpolys = numpolys + 1;
}

}
}

}

Array islands[1];
numeric size;
size = 100;
Array deleteisland[size];
numeric numofislands;
numeric k;
k = 1;

for each poly[i] in Output {
numofislands = GetVectorPolyIslandList(Output,

islands);
if (numofislands > 0) {

for j = 1 to numofislands {
TableReadAttachment(tinfo,islands[j],
records);

RecordDelete(tinfo,records[1]);
deleteisland[k] = islands[j];
k += 1;
if (k >= size) {
ResizeArrayPreserve(deleteisland,size+100)
size += 100;

}
}

}
}

if (k > 1)
VectorDeletePolys(Output,deleteisland,k-1);

print(“The number of island polygons deleted
 was”,k-1);

SetStatusBar(0,10);

VectorValidate(Output);

Creates Output vector object with same
Georeference as 1st input vector

Open Select Objects window and
get input TIGER vector objects

Create database for polygon element with
CITY_NAMES table / CITY_NAMES field

For every input vector...

For every line in vector...

Get list of points in line

Add line to output vector

If the addition of a line creates a polygon (there are more polygons
in output vector than there were in last iteration), then add attribute
record to CITY_NAMES table for polygon element

Attach record to element

Add new record to table

Polygon element
ID number

Delete island polygons and attached recordsOpen Geo_Names_P table in input object

If line is a city boudary...
(In TIGER data, if the left and right
side of a line have different
attributes then the line is a city
boundary.)

Get city name from Geographic_Name field

MicroImages, Inc. (402)477-9554 • FAX (402)477-9559 • 206 S. 13th Street, Lincoln, Nebraska 68508-2010 USA • info@microimages.com • April 2001

Sample SML Script

TNTmips includes a Network Analysis process that determines the “best” route between points that fall
along a set of lines or the allocation of lines for the most efficient use in delivery to or transportation
from a set of centers. In either case, the stops along the route or the centers must fall on the line
network (the process automatically chooses the nearest node when you indicate the location
of a stop or center). But what do you do when your points, in this case farm gates and process-
ing plants, are not actually on the roads? Use an SML script like the one described here.

This script uses three vector objects: one to provide the road net-
work, one with farm gate locations, and one with processing plant
locations. You can substitute any widely distributed product location
for the farm gates and any central location to which the product would
be delivered for the processing plants. The difficulty in this particu-
lar case is that the data is not suitable for direct use in the Network
Analysis process because, even if merged into a single vector object,
the points do not fall on the roads (you may have to zoom in quite a
way for it to be evident, see inset at left). The problem data was

provided by AgriQuality New Zealand (formerly part of the Minis-
try of Agriculture and Forestry). This script uses only the distance
from the processing plants to calculate impedance, but you can
include a variety of other factors, such as road conditions, speed
limits, and the price offered at each processing plant. You can readily

change the market components of the impedance on a daily basis if
need be with the end result of a dynamic appraisal of the best market
for delivery of your product today.

The script adds a node to the ROADS object at the closest point on the
closest line for each of the points in the FARMS object. It keeps track of these added nodes in an array that associates them with
the correct farm. Nodes are similarly added for each of the processing plants. The shortest distance between each farm and
processing plant is calculated using network analysis functions. This script adds two new tables to the point database of the
FARMS vector object: one with records attached to each point that list the distance to each of the processing plants and another
that provides the geographic coordinates of each processing plant in
the same coordinate system used by the FARMS object. The ROADS

vector ends up with many new nodes (equal to the number of farms
and processing plants) that are not required for topology. These nodes
can easily be removed by filtering the vector (use the Remove Ex-
cess Nodes filter) if desired.

The script attaches multiple records to each farm gate point—one
for each processing plant. Such multiple attachments mean you can-
not simply style by attribute because the first record at-
tached to every point reports the distance to the first pro-
cessing plant. In order to style each point according to
which processing plant is closest or can be reached with
the least impedance, you need to style by script using a
script designed to evaluate all attached records. The script
used to style the results shown here is included on the back of this
page along with the script that determines the distance to each of the
processing plants.

sample
data area

New
Zealand

Farm to Market Routing

distance
in km

Script for Market Routes (network.sml)

MicroImages, Inc. (402)477-9554 • FAX (402)477-9559 • 206 S. 13th Street, Lincoln, Nebraska 68508-2010 USA • info@microimages.com • April 2001

Sample scripts have been prepared to illustrate how you might use the features of TNTmips’ Spatial Manipulation
Language (SML). If possible, the full script is printed below for your quick perusal. When a script is too long to fit on
one page, key sections are reproduced below. The sample script illustrated can be downloaded from the SML script
exchange at www.microimages.com/sml/ftpsmllink/TNT_Products_V6.5_CD.

clear(); #clear console

GetInputVector(Farms); #this vector is modified since tables are written to it
GetInputVector(Plants);
GetInputVector(TempNetwork); #this vector is modified by adding nodes

VectorToolkitInit(TempNetwork,”NoDBStatTable”);
VectorToolkitInit(Farms);

numeric numPoints;
numeric numFarms;
numeric numPlants;
numeric numLines;
numeric i;

Array xarray[1];
Array yarray[1];

numFarms = NumVectorPoints(Farms);
Array farms[numFarms];
numeric linenumber;
numeric tempx;
numeric tempy;
numeric a;
numeric b;
numeric distance;

farmgeo = GetLastUsedGeorefObject(Farms);
tempgeo = GetLastUsedGeorefObject(TempNetwork);

printf(“The number of farms is %d\n”,numFarms);

for i=1 to numFarms {
SetStatusMessage(sprintf(“Processing point %d of %d of farms”,i,numFarms));
tempx = Farms.point[i].Internal.x;
tempy = Farms.point[i].Internal.y;
GeorefTrans(farmgeo,tempx,tempy,tempgeo,tempx,tempy);
linenumber = FindClosestLine(TempNetwork,tempx,tempy);
ClosestPointOnLine(TempNetwork,linenumber,tempx,tempy,a,b);
VectorAddNode(TempNetwork,a,b,1);
farms[i] = FindClosestNode(TempNetwork,a,b);
}

numPlants = NumVectorPoints(Plants);
Array plants[numPlants];

plantgeo = GetLastUsedGeorefObject(Plants);

printf(“The number of plants is %d\n”,numPlants);

for i=1 to numPlants {
SetStatusMessage(sprintf(“Processing point %d of %d of plants”,i,numPlants));
tempx = Plants.point[i].Internal.x;
tempy = Plants.point[i].Internal.y;
GeorefTrans(plantgeo,tempx,tempy,tempgeo,tempx,tempy);
linenumber = FindClosestLine(TempNetwork,tempx,tempy);
ClosestPointOnLine(TempNetwork,linenumber,tempx,tempy,a,b);
VectorAddNode(TempNetwork,a,b,1);
plants[i] = FindClosestNode(TempNetwork,a,b);
}

VectorUpdateStdAttributes(TempNetwork);
CloseVector(TempNetwork); #flush vector

class Network net;
class Route route;
class MultiRoute multiroute;
numeric imp;

net =
NetworkInit(GetObjectFileName(TempNetwork),GetObjectName(GetObjectFileName(TempNetwork),GetObjectNumber(TempNetwork)));
NetworkSetDefaultAttributes(net);

numLines = NumVectorLines(TempNetwork);
for i=1 to numLines {

imp = (TempNetwork.line[i].LINESTATS.Length);
NetworkLineSetImpedance(net,i,imp,”FromTo”);
NetworkLineSetImpedance(net,i,imp,”ToFrom”);
}

total = numFarms * numPlants;
numeric count;
count = 1;
string tablename$;
class DATABASE db;
class DBTABLEINFO tinfo;

db = OpenVectorPointDatabase(Farms);
numeric recordnumber;
Array records[1];
numeric distance;

tinfo = TableCreate(db,”Plant_Num”,”Created by SML script”);
TableAddFieldInteger(tinfo,”Plant”,3);
TableAddFieldFloat(tinfo,”xcoord”,25,6);
TableAddFieldFloat(tinfo,”ycoord”,25,6);
for j=1 to numPlants {

tempx = Plants.point[j].Internal.x;
tempy = Plants.point[j].Internal.y;
GeorefTrans(plantgeo,tempx,tempy,tempgeo,tempx,tempy);
recordnumber = TableNewRecord(tinfo,j,tempx,tempy);
records[1] = recordnumber;
TableWriteAttachment(tinfo,i,records,1);
}

tablename$ = “Plant_Dist”;
tinfo = TableCreate(db,tablename$,”Created by SML Script”);
TableAddFieldInteger(tinfo,”Plant”,3);
class DBFIELDINFO the_field;
the_field = TableAddFieldFloat(tinfo,”Net_Dist”,25,6);
the_field.UnitType = “Distance”;
the_field.Units = “kilometers”;

for j=1 to numPlants {

printf(“Plant %d\n”,j);
SetStatusMessage(sprintf(“Calculating all routes from plant %d of %d”,j,numPlants));
NetworkCalculateMultiRoute(net,plants[j],farms,numFarms,multiroute);

for i=1 to numFarms {
SetStatusMessage(sprintf(“Calculating route %d of %d”,count,total));
count +=1;
printf(“Route from plant %d to farm %d\n”,j,i);

NetworkMultiRouteGetRoute(multiroute,farms[i],route);
report$ = NetworkRouteGetReport(route);

distance = StrToNum(GetToken(report$, “ “,18));
recordnumber = TableNewRecord(tinfo,j,distance/1000); #m/1000 = km
records[1] = recordnumber;
TableWriteAttachment(tinfo,i,records,1);

NetworkRouteClose(route);
}

NetworkMultiRouteClose(multiroute);
}

NetworkClose(net);

CloseVector(Farms);
CloseVector(TempNetwork);
CloseVector(Plants);

printf(“Script Ran to Completion”);

finds closest point
on closest line to
farm gate and
adds a node

finds closest point
on closest line to
processing plant
and adds a node

updates standard attributes
and closes modified vector
object (road network)

variable
declarations

prompts for
input vectors

gets georeference
for farms and roads

creates table and
field with km
distance units

calculates
distance of best
route from each
farm to each
processing plant
and adds to record
attached to farm in
distance table

sets network
impedance to
line length

creates table that
reports plant
locations in same
coordinate
system as farms

creates array of all
added nodes and
corresponding farms

Script for Styling by Closest Plant
val = Plant_Dist[1].Net_Dist
id = Plant_Dist[1].Plant

for i = 2 to SetNum(Plant_Dist[*]) {
 if (Plant_Dist[i].Net_Dist < val) {
 val = Plant_Dist[i].Net_Dist;
 id = Plant_Dist[i].Plant;
 }
}

if (id == 1)
 Style$ = “Style1” else
if (id == 2)
 Style$ = “Style2” else
 Style$ = “Style3”
UseStyle = 1

finds processing
plant with lowest
distance value

assigns drawing
style according to
plant identified as
closest

Movie Generation Scripts

MicroImages, Inc. (402)477-9554 • FAX (402)477-9559 • 206 S. 13th Street, Lincoln, Nebraska 68508-2010 USA • info@microimages.com • May 2001

Sample SML Scripts

View Window

Frame

Movie

The main processing loop of any
movie script must perform three major
functions:
1. Change the content of one or more

view windows and redraw. This
step might involve altering the
viewing parameters for a 3D view,
or adding new layers or updating
existing layers in a 2D view.

2. Copy the contents of the view
window(s) to a frame. Additional
graphic symbols or annotation text
can be drawn directly into the
frame if you wish.

3. Copy the frame to the output movie
file.

The Spatial Manipulation Lan-
guage (SML) now puts you in the
director’s chair. Using new movie
generation SML functions in

TNTmips 6.50 you can create scripts that set up
and record custom animations of your geospatial
data. You can record these animations in either
MPEG format (any computer platform) or AVI for-
mat (Windows computers only) and set both
frame rate and recording time. MicroImages has
prepared a number of sample movie generation
scripts, one of which is excerpted on the reverse
side of this page. Although these movie genera-
tion scripts were prepared after the TNTmips 6.50
Products CD was mastered, you can download
any of the scripts as well as sample movie files
from the Downloads page of the MicroImages
web site:

www.microimages.com/freestuf/.
The 30 new SML functions and class methods
that implement movie generation incorporate
many of the capabilities of the 3D Simulation pro-
cess in TNTmips. But they also give you more
control over the 3D viewing parameters. You can
specify viewer position and view
direction independently, so that the
3D view can look ahead along the
flight path (as in the standard 3D
Simulation process), or to the side,
straight down, or backward along
the flight path. You can create a
single 3D movie that incorporates

elements of the path, orbit, and pan modes of the
3D Simulation process.
But animations are not limited to 3D simulations.
An animation merely consists of a gradually vary-
ing series of static frames. Each frame is rendered
from one or more View windows created by the
script and then copied into the output MPEG or
AVI file. The movie therefore can record any se-
quential change in the view windows used to
create the frames.
A simple example would be a sequence of 2D
views showing a change in some mapped param-
eter through time. The script can sequentially
add and then remove a series of pre-prepared lay-
ers to and from the view, or modify the display
parameters for a single continuing layer (such as
a set of vector polygons with attached attributes)
to create the change from frame to frame. More
complex examples might sequentially display the
result of some process computed in the script,
such as a series of viewsheds computed for dif-
ferent positions along a traverse line through a
terrain model. The possibilities are limited only
by your source data and your imagination!

New functions in the Frame and Movie function groups
are used to set up the generic frame and movie param-
eters, capture the View window contents to a frame, and
copy the frame to the output AVI or MPEG file. For 3D
animations, new class methods in the VIEWPOINT3D
class are used to manipulate the settings for the 3D view.
You can set viewer and view center position coordinates
explicitly for each frame, or move either position a speci-
fied distance or direction relative to the previous position.
Either position can be rotated around the other. You can
also set either position and then use an azimuth angle,
elevation angle, and distance to define the other.

In a 3D simulation script you can render both 2D and 3D views into each frame, as
shown in the above illustration. After each frame is captured you can also draw
symbols into it marking the current viewer position and view center position, and
draw a trail of previous position symbols behind the moving symbol. Sample 3D
simulation scripts are available to show how to script these features, and to set
up panning, a spiral orbit, and contant-altitude and constant-height flight paths.

Excerpts from Constant Height Flight Path Script (PATHcHT2.sml)

MicroImages, Inc. (402)477-9554 • FAX (402)477-9559 • 206 S. 13th Street, Lincoln, Nebraska 68508-2010 USA • info@microimages.com • May 2001

Sample scripts have been prepared to illustrate how you might use the new features of TNTmips’ Spatial Manipulation
Language (SML). Key sections of one script are reproduced below for your quick perusal. The entire script can be
downloaded from the SML script exchange at www.microimages.com/sml/ftpsmllink/TNT_Products_V6.5_CD.

string format$;
format$ = “AVI”;

string framerate$;
framerate$ = “MOVIE_FRAMERATE_24”;

numeric time;
time = 60;

GetInputRaster(Surface);
GetInputRaster(RastDrape);
GetInputVector(FlightPathVec);
GetInputVector(ViewCenterVec);

string styleFilename$;
string styleObjectname$;
GetInputObject(“Style”,”Select style object for center and viewer

point symbols:”, styleFilename$, styleObjectname$)
string viewer$;
viewer$ = “VIEWER”;
string center$;
center$ = “CENTER”

print(“START”);

numeric size;
size = 320;

numeric zoomfactor;
zoomfactor = 1.0;

class GROUP group;
group = GroupCreate();

string flags$;
flags$ = “NoScalePosLine,NoIconBar,NoScrollbars,NoStatusLine”;

class XmForm dialog2d;
class VIEW view2d;
dialog2d = CreateFormDialog(“VIEW 2D”);
view2d = GroupCreateView(group,dialog2d,””,size,size,flags$);
view2d.BackgroundColor.red = 67;
view2d.BackgroundColor.green = 100;
view2d.BackgroundColor.blue = 100;

class XmForm dialog3d;
class VIEW3D view3d;
dialog3d = CreateFormDialog(“VIEW 3D”);
view3d = GroupCreate3DView(group,dialog3d,””,size,size,flags$);
view3d.BackgroundColor.red = 67;
view3d.BackgroundColor.green = 100;
view3d.BackgroundColor.blue = 100;

GroupQuickAddRasterVar(group,Surface,1);
GroupQuickAddRasterVar(group,RastDrape,0);

DialogOpen(dialog2d);
DialogOpen(dialog3d);

ViewRedrawFull(view2d);
ViewRedrawFull(view3d);
ViewZoomOut(view2d,zoomfactor,1);

x2d = 0;
y2d = 0;
x3d = size;
y3d = 0;
w = 2 * size;
h = size;

numeric fontsize;
fontsize = 16;

class Frame frame;
frame = FrameCreate(w,h);

ActivateGC(FrameCreateGC(frame));
DrawTextSetHeightPixels(fontsize);
DrawUseStyleObject(styleFilename$,styleObjectname$);

class Movie movie;
movie = MovieInit();

MovieSetFormat(movie,format$);
MovieSetFrameRate(movie,framerate$);
MovieSetFrameWidth(movie,w);
MovieSetFrameHeight(movie,h);

string ext$;
ext$ = MovieGetFileExt(movie);
string filename$;
filename$ = GetOutputFileName(“”,”Make filename for movie”,ext$);

if (time <= 1.0) time = 1.0;

numFrames = time * rate;

class Georef georefS;
georefS = GetLastUsedGeorefObject(Surface);
GeorefSetProjection(georefS,group.Projection);

class Georef georefFlight;
georefFlight = GetLastUsedGeorefObject(FlightPathVec)
GeorefSetProjection(georefFlight,group.Projection);

class Georef georefCent;
georefCent = GetLastUsedGeorefObject(ViewCenterVec);
GeorefSetProjection(georefCent,group.Projection);

MovieStart(movie,filename$);

for i = 1 to numFrames {
class POINT3D fpt;
fpt.x = xarrayf_eq[i];
fpt.y = yarrayf_eq[i];
fpt.z = zarrayf_eq[i];
vp.SetViewerPosition(fpt);

class POINT3D cpt;
cpt.x = xarrayc_eq[i];
cpt.y = yarrayc_eq[i];
cpt.z = zarrayc_eq[i];
vp.SetCenter(cpt);

ViewRedraw(view3d);

FrameCopyFromView(frame,view2d,0,0,size,size,x2d,y2d);
FrameCopyFromView(frame,view3d,0,0,size,size,x3d,y3d);

for j = 1 to (i - 1) {
SetColor(colorc)
FillCircle(xarraycs[j],yarraycs[j],2)

}

class POINT2D point;
point.x = vp.CenterPoint.x;
point.y = vp.CenterPoint.y;
point =

TransPoint2D(point,ViewGetTransMapToView(view2d,group.Projection));
point = TransPoint2D(point,ViewGetTransViewToScreen(view2d));
DrawSetPointStyle(center$);
DrawPoint(point.x,point.y);

xarraycs[i] = point.x;
yarraycs[i] = point.y;

for j = 1 to (i - 1) {
SetColor(colorf)
FillCircle(xarrayfs[j],yarrayfs[j],2)

}

point.x = vp.ViewPos.x;
point.y = vp.ViewPos.y;
point =

TransPoint2D(point,ViewGetTransMapToView(view2d,group.Projection));
point = TransPoint2D(point,ViewGetTransViewToScreen(view2d));
DrawSetPointStyle(viewer$);
DrawPoint(point.x,point.y);

xarrayfs[i] = point.x;
yarrayfs[i] = point.y;

DrawTextSetColors(black);
DrawTextSimple(“Muddy Mountains, NV”,2,fontsize);
DrawTextSetColors(colorc);
DrawTextSimple(“View center path”,2,fontsize*2.1);
DrawTextSetColors(colorf);
DrawTextSimple(“Flight path”,2,fontsize*3.3);

MovieAddFrame(movie,frame);
}

MovieStop(movie);
MovieExit(movie);
DialogClose(dialog2d);
DialogClose(dialog3d);

Stop and exit movie, close dialogs

End of loop recording frames

Add frame to movie

Draw text
annotation
in frame

Update arrays of previous
viewer position coordinates

Draw current viewer position in frame

Loop to draw
previous viewer
positions in frame

Update arrays of previous
center point coordinates

Draw current center point in frame

Loop to draw previous
center points in frame

Copy both
views to frame

Redraw both views

Set view center position

Set viewer position along flight path

Begin loop for each frame

Start recording movie

Get georeference
parameters for layers
and reset to group

projection
defined by
raster drape
layer

Check recording time and
calculate number of frames

Make output fileSet movie format, frame
rate, and recording time

Select input DEM for surface, raster
drape, and two vector objects
containing ground traces of
flight path and view center path

Select style object containing
point symbol styles for viewer
position and view center position

Variables to set size of 2D and 3D view
windows and zoom-out factor for 2D view

Create display group. Create flag to create
view without iconbar, scrollbars, status line,
and scale/position line; important to maintain
fixed window size during movie generation

Create dialog and 2D view

Create dialog and 3D view

Add surface and
raster drape to group

Open both views

Full redraw of both views

Parameters to set location and
size of each view in movie frame

Set fontsize for text annotation in frame

Create blank frame

Create graphics context for frame

Initialize movie

Set more movie parameters

Section computing arrays of viewer
and center positions from input vectors
is omitted here; see script

Macro Script Setup
Macro scripts and tool scripts add a powerful new way to use Spatial
Manipulation Language (SML) in your TNT products. To add a macro
script so it can be run from an icon on the View window toolbar, choose
Options / Customize / Macro Scripts from the View window in the
Display process or any other process with a View window. Making
this selection opens the Customize Macro Scripts window.

MicroImages, Inc. (402)477-9554 • FAX (402)477-9559 • 206 S. 13th Street, Lincoln, Nebraska 68508-2010 USA • info@microimages.com • October 2000

New
Add Edit

Properties

Delete

Click on New if your
script is not yet written
or click on Add if you
already have a script

(Process / SML / Edit Script). Clicking on New opens the Query Editor window,
which is used to prepare / edit SML scripts. A few predefined symbols that may be
of use appear as comments when the Query Editor opens. The same features avail-
able for script construction in the SML process are available here. You are prompted to save your script when you click on OK in
the Query Editor. Once the script is saved, the Macro Script Properties window opens. Clicking on Add opens the Select File
window so you can locate the script you want to use. Only *.sml files are listed by default—you need to change the Files of Type
option to all if your script has a different file extension or has been saved as an RVC object. Once the script is located and you
click OK, the Macro Script Properties window opens.

The Macro Script Properties window lets you choose an icon, indicate whether the
script is for a simple button or a menu button, set up the ToolTip, enter menu items if a
menu button is used, and test your script. Clicking on the Icon button opens the Select
Icon window so you can choose a different icon from the more than 700 icons in this
size available with TNTmips. The Type option menu offers two choices: Simple But-
ton and Menu button. A simple button automatically executes its script without further
input from the user. A menu button drops down a list of choices that determine the
outcome of running the script. If Menu Button is chosen in the Macro Script Properties
window, the Menu Choices text field becomes active so you can enter the menu choices
you want available when you click on the Macro Script icon on the View toolbar. Each

line in the Menu Choices field represents a separate menu choice. Enter the ToolTip you want directly in the ToolTip field. This
ToolTip will appear when the cursor is paused over the Macro Script icon in the View window. The Test button at the bottom of
the window lets you run your script without closing the customize windows. If the script uses a menu button, the menu choice
with2 the text cursor is the option chosen. If the script does not perform exactly as anticipated, the Edit button at the bottom of the
window opens the Query Editor containing the script so you can make modifications.

Click OK in the Macro Script Properties and Customize Macro Scripts windows when you are done adding, developing, and/or
testing your script. Return to the Customize Macro Scripts window anytime to add or delete scripts, or open the Macro Script
Properties window (click on Properties icon in Customize Macro Scripts window) to change the icon, ToolTip, or menu choices.

Zoom to Specified Map Scale
Sample SML Macro Script

The Zoom to Scale macro script lets you specify a number of different map
scales or ground dimensions to use to adjust the display scale. When you
pick the desired scale from the drop-down menu on the Zoom to Scale script
icon, the contents of the View window are redrawn at the indicated scale. If

This option menu lets you designate
whether your macro script is de-
signed for a simple button (push the
button and the macro script is ex-
ecuted) or a menu button. In order
for a macro script to provide choices,
you must indicate you want the icon
to be a menu button. You can then
type in the menu choices you want.

MicroImages, Inc. (402)477-9554 • FAX (402)477-9559 • 206 S. 13th Street, Lincoln, Nebraska 68508-2010 USA • info@microimages.com • October 2000

the scale is specified
in ground dimen-

sions, for example 1
mile or 10 miles,
you get the specified

distance plus 10% for
the smallest window
dimension. (For ex-
ample, if you choose
10 miles and the win-
dow is wider than it is
tall, 11 miles is visible
in the vertical dimen-
sion of the window.)

In order for the Zoom to Scale script to work as designed,
the objects displayed must either be georeferenced or scale
calibrated. In order for map scale displays to be accurate,
you also need to have set up your screen width and height
on the MI/X panel for General System Preferences (Sup-
port / Setup / Preferences).

This particular script accepts two kinds of scale input, map
scale and miles. If the menu choice is purely numeric, it is
taken as a designated map scale. If the menu choice con-
sists of a number, a space, and any other character, it is taken
as a designated ground distance in miles.

Each time you select from the Zoom to Scale icon menu,
the scale is adjusted while maintaining the same view cen-
ter if possible (if you are zooming out and are near the edge
of the displayed objects, the view will be recentered).

Remember when working with map scale that a smaller
entered number means things appear larger. For example,
the dimensions of a park or other area of interest will be
twice as large at 1:12000 as they are at 1:24000, which are
represented by menu choices of 12000 and 24000, respec-
tively.

Script for Zoom to Scale (zoomto.sml)

MicroImages, Inc. (402)477-9554 • FAX (402)477-9559 • 206 S. 13th Street, Lincoln, Nebraska 68508-2010 USA • info@microimages.com • October 2000

if (NumberTokens(MenuChoice$,” “) == 1) {
ViewSetMapScale(View,StrToNum(MenuChoice$));
}

else if (NumberTokens(MenuChoice$,” “) == 2) {
widthmeters = View.PixelSizeMillimeters * View.Width / 1000;
heightmeters = View.PixelSizeMillimeters * View.Height / 1000;
if (widthmeters < heightmeters) {

mindim = widthmeters;
}

else {
mindim = heightmeters;
}

newdim = StrToNum(GetToken(MenuChoice$,” “,1)) * GetUnitConvDist(“miles”,”meters”);
newscale = newdim / mindim * 1.1;
ViewSetMapScale(View,newscale);
}

You could change this script to zoom to entered
kilometer dimensions, rather than miles, by changing
the word miles to kilometers here.

Macro and Tool Scripts can be created using SML in any TNTmips process that uses a View window (Options /
Customize from the View window menu bar). These scripts are then available from an icon, which you select or
design, on the toolbar. Sample scripts have been prepared to illustrate how you might use these features, which are
available only in TNTmips 6.4 or later, to assist with specific tasks you perform on a regular basis. If possible, the full
script is printed below for your quick perusal. When a script is too long to fit on one page, key sections are repro-
duced below. All sample Tool and Macro Scripts illustrated can be found in their entirety on your TNT products CD-
ROM in the directory where your TNT products are installed. These scripts, among others, can be downloaded from
the SML script exchange at www.microimages.com/sml/ftpsmllink/TNT_Products_V6.4_CD.

Tool Script Templates
Tool scripts and macro scripts add a powerful new way to use Spatial
Manipulation Language (SML) in your TNT products. To add a tool
script to run from an icon on the View window toolbar, choose Op-
tions / Customize / Tool Scripts from the View window in the Display
process or any other process with a View window. Making this selec-
tion opens the Customize Tool Scripts window. Tool Script icons ap-
pear to the left of any Macro Script icons on the View window toolbar.

MicroImages, Inc. (402)477-9554 • FAX (402)477-9559 • 206 S. 13th Street, Lincoln, Nebraska 68508-2010 USA • info@microimages.com • October 2000

Click on New if your
script is not yet written
or click on Add if you

or someone else has already written the script (Process / SML / Edit Script). Clicking
on New opens the Query Editor window, which is used to prepare / edit SML
scripts. The same predefined symbols provided for macro scripts appear as com-
ments when the Query Editor opens. Additionally, a number of predefined values
(such as number PointerX, which provides the pointer X coordinate within the view in pixels) and functions likely to be used in
a Tool Script are provided as a template for your custom script. The template includes functions used the first time a tool is

activated; when the tool is destroyed; when the tool is acti-
vated and deactivated; when the tool is suspended (during
redraw) and resumed (after redraw); when the left, right, or
middle mouse button is pressed or relesed; when the cursor
moves without a button press; when the cursor moves with a
button press; when the cursor enters or leaves the View win-
dow; and when the user presses a key. If you want to use
these functions in your script, uncomment the lines (remove
the leftmost #) and add function code between the lines as

needed. The same features available for script construction in the SML process are available here. You are prompted to save your
script when you click on OK in the Query Editor. Once the script is saved, the Tool Script Properties window opens.

The Customize Tool Scripts window has exactly the same buttons and functions as the Customize Macro Scripts window (see the
Macro Script Setup color plate). If you choose to add an existing script, once the script is located and you click OK, the Tool
Script Properties window opens. The Tool Script Properties window lacks some of the features of the Macro Script Properties

window—you choose an icon and set up the ToolTip, but there is no Type option button and
consequently no Menu Choices panel. The Test button is not available for tool scripts. You
need to test the tool from the View window itself once the tool is added.

Click OK in both the Tool Script Properties and Customize Tool Scripts windows when you are
done adding your script. You can always return to the Customize Tool Scripts window (Options

/ Customize / Tool Scripts) to add or delete scripts, or open the Tool Script Properties window (click on the Properties icon in
Customize Tool Scripts window) to change the icon or ToolTip.

A number of different sample tool scripts are provided with the TNT products. You can use components from any or all of
these scripts to create the custom tool you need for your specialized application. The interface windows created by some of
these tool scripts are shown below.

tool script icon
macro script icon

The ViewMarks tool script builds up a
list of desired view points and scales
so you can jump to specific locations.

The Area Statistics
tool script lets you
draw a polygon
around a region on the
screen and computes
the area statistics for
that region of the
selected raster.

The Flow Path
tool script lets
you choose
which of a
number of
watershed
properties you
would like to
see from a
given point in
the view.

New
Add Edit

Properties

Delete

ViewMarks
Sample SML Tool Script

ViewMarks are position markers for a single view win-
dow. They are particularly useful for layouts covering a
large geographic area, especially when limited map scale
visibility is used to add and remove layers as you zoom
in and out. Mark a view of interest and return to that
view from any scale or position by selecting it from the
list of viewpoints you build up.

The script, a portion of which is shown on the other side
of this page, creates the Viewpoint List window (below,
left) with the buttons needed to make, save, and open

The Viewpoint List remains as long as
the current View window is open. If you
want to use the same ViewMarks in an-
other display session, you need to save
the list. When you choose to save your
viewpoint list, a .pos file is created. This
file simply contains the name you entered
for the viewpoint, the map scale, and cen-
ter point for each viewpoint on the list.
Thus, the file can be used again with the
same group, layout, or single-layout at-
las, or it can be used with a completely
different set of layers that covers the same
geographic area.

The example on this page is derived from the Nebraska State-
wide atlas, which is a single layout that uses map scale con-
trolled visibility to increase the level of detail shown as you
zoom in.

MicroImages, Inc. (402)477-9554 • FAX (402)477-9559 • 206 S. 13th Street, Lincoln, Nebraska 68508-2010 USA • info@microimages.com • October 2000

When you add a ViewMark, the default name provided
is the map scale and center coordinates for the view,
which can be changed to a more descriptive name.

viewpoint lists; to add and remove points from the list; and to zoom to the selected point and close the
window. You can also double-click on a list entry to display it.

Thus, ViewMarks let you work with data sets that cover
large areas and still rapidly locate and return to areas of
interest in high resolution imagery or detailed vector
objects. ViewMarks have use beyond TNTmips’ Dis-
play process; they can be set up for any process that uses
a View window, for example, the Spatial Data Editor.
Thus, you can mark a number of positions that are criti-
cal to check after some global editing operation, such as
line snapping or filtering, and return to each with ease.

class XmForm dlgform;
class XmList poslist;
class MAPPROJ projLatLon;
class TRANSPARM transMapToView;
class FILE posfile;
number ischanged;
number setDefaultWhenClose;
number numpos;
array posX[1];
array posY[1];
array posScale[1];

func DoSave () {
if (numpos == 0) return;
posfilename$ = GetOutputFileName(“”,”Select position file to save as:”,”pos”);
DeleteFile(posfilename$);
posfile = fopen(posfilename$,”w”);
if (posfile == 0) return (false);
local i;
for i = 1 to numpos {

fprintf(posfile,”%s,%f,%f,%f\n”,poslist.GetItemAtPos(i),posX[i],posY[i],posScale[i]);
}

fclose(posfile);
ischanged = false;
return (true);
}

func AskSave () {
if (!ischanged || numpos == 0) return (true);
local answer;
answer = PopupYesNoCancel(“Save current point list?”,1);
if (answer < 0) return (false);
if (answer == 0) return (true);
return (DoSave());
}

proc DoZoom () {
local selpos;
if (numpos == 0) return;
selpos = poslist.GetFirstSelectedPos();
if (selpos > 0) {

transMapToView = ViewGetTransMapToView(View,projLatLon);
if (transMapToView == 0) {

PopupMessage(“Cannot obtain map/view transformation.”);
return;
}

class POINT2D zpoint;
zpoint.x = posX[selpos];
zpoint.y = posY[selpos];
zpoint = TransPoint2D(zpoint,transMapToView,false);
class RECT vextents;
vextents = View.Extents;
if (zpoint.x < vextents.x1 || zpoint.x > vextents.x2 || zpoint.y < vextents.y1 || zpoint.y > vextents.y2) {

PopupMessage(“Point is outside extents of objects being viewed.”);
return;
}

View.DisableRedraw = true;
View.CurrentMapScale = posScale[selpos];
View.Center = zpoint;
View.DisableRedraw = false;
ViewRedraw(View);
}

}
proc DoAdd () {

transMapToView = ViewGetTransMapToView(View,projLatLon);
if (transMapToView == 0) {

PopupMessage(“Cannot obtain map/view transformation.”);
return;
}

class POINT2D cpoint;
cpoint = TransPoint2D(View.Center,transMapToView,true);
numpos = numpos + 1;
ResizeArrayPreserve(posX,numpos);
ResizeArrayPreserve(posY,numpos);
ResizeArrayPreserve(posScale,numpos);
posX[numpos] = cpoint.x;
posY[numpos] = cpoint.y;
posScale[numpos] = View.CurrentMapScale;
namestr$ = sprintf(“1:%.0f %f %f”,posScale[numpos],posX[numpos],posY[numpos]);
namestr$ = PopupString(“Enter view position name:”,namestr$);
while (poslist.ItemExists(namestr$)) {

namestr$ = PopupString(“Name already used.\nEnter view position name:”,namestr$);
}

Partial Script for ViewMarks (vptool.sml)

MicroImages, Inc. (402)477-9554 • FAX (402)477-9559 • 206 S. 13th Street, Lincoln, Nebraska 68508-2010 USA • info@microimages.com • October 2000

Macro and Tool Scripts can be created using SML in any TNTmips process that uses a View window (Options / Custom-
ize from the View window menu bar). These scripts are then available from an icon, which you select or design, on the
toolbar. Sample scripts have been prepared to illustrate how you might use these features, which are available only in
TNTmips 6.4 or later, to assist with specific tasks you perform on a regular basis. If possible, the full script is printed
below for your quick perusal. When a script is too long to fit on one page, key sections are reproduced below. All
sample Tool and Macro Scripts illustrated can be found in their entirety on your TNT products CD-ROM in the directory
where your TNT products are installed. These scripts, among others, can be downloaded from the SML script exchange
at www.microimages.com/sml/ftpsmllink/TNT_Products_V6.4_CD.

poslist.AddItem(namestr$);
ischanged = true;
}

proc DoRemove () {
local selpos;
local i;
if (numpos == 0) return;
selpos = poslist.GetFirstSelectedPos();
if (selpos > 0) {

poslist.DeletePos(selpos);
for i = selpos to numpos - 1 {

posX[i] = posX[i+1];
posY[i] = posY[i+1];
posScale[i] = posScale[i+1];
}

numpos = numpos - 1;
ischanged = true;
}

}
proc DoNew () {

if (!AskSave()) return;
numpos = 0;
poslist.DeleteAllItems();
ischanged = false;
}

proc DoOpen () {
if (!AskSave()) return;
posfile = GetInputTextFile(“”,”Select positions file to open:”,”pos”);
if (posfile == 0) return;
numpos = 0;
poslist.DeleteAllItems();
ischanged = false;
while (!feof(posfile)) {

filestr$ = fgetline$(posfile);
if (NumberTokens(filestr$,”,”) < 4) continue;
numpos = numpos + 1;
ResizeArrayPreserve(posX,numpos);
ResizeArrayPreserve(posY,numpos);
ResizeArrayPreserve(posScale,numpos);
poslist.AddItem(GetToken(filestr$,”,”,1));
posX[numpos] = StrToNum(GetToken(filestr$,”,”,2));
posY[numpos] = StrToNum(GetToken(filestr$,”,”,3));
posScale[numpos] = StrToNum(GetToken(filestr$,”,”,4));
}

fclose(posfile);
}

proc DoClose () {
if (setDefaultWhenClose) {

setDefaultWhenClose = false;
View.SetDefaultTool();
}

}
func OnInitialize () {

class MAPPROJ tempLatLon;
tempLatLon.System = “LatLon”;
tempLatLon.Datum = “WGS84”;
projLatLon = tempLatLon;
dlgform = CreateFormDialog(“Viewpoint List”,View.Form);
WidgetAddCallback(dlgform.Shell.PopdownCallback,DoClose);
class PushButtonItem btnItemNew;
class PushButtonItem btnItemOpen;
class PushButtonItem btnItemSave;
class PushButtonItem btnItemAdd;
class PushButtonItem btnItemRemove;
class PushButtonItem btnItemZoom;
class PushButtonItem btnItemClose;
btnItemNew = CreatePushButtonItem(“New”,DoNew);
btnItemNew.IconName = “new”;
btnItemOpen = CreatePushButtonItem(“Open...”,DoOpen);
btnItemOpen.IconName = “open_”;
btnItemSave = CreatePushButtonItem(“Save...”,DoSave);
btnItemSave.IconName = “save”;
btnItemAdd = CreatePushButtonItem(“Add”,DoAdd);
btnItemAdd.IconName = “add_sel”;
btnItemRemove = CreatePushButtonItem(“Remove”,DoRemove);
btnItemRemove.IconName = “remove_sel”;
btnItemZoom = CreatePushButtonItem(“Zoom”,DoZoom);
btnItemZoom.IconName = “apply”;
btnItemClose = CreatePushButtonItem(“Close”,DoClose);
btnItemClose.IconName = “delete”;

(see vptool.sml for full script)

saves the list
to a file

zooms to sel-
ected position

adds current
viewpoint to
list

removes
selected item
from list

clears the list

opens file
containing list

closes the
window and
switches to
default tool

is called the first
time the tool is
activated

Sample SML Tool Script

Area Statistics

MicroImages, Inc. (402)477-9554 • FAX (402)477-9559 • 206 S. 13th Street, Lincoln, Nebraska 68508-2010 USA • info@microimages.com • October 2000

The Area Statistics Tool Script operates on the raster layer that is currently
active. In the example above the DEM raster layer is active, but the polygon
outlining the burned area is drawn on an overlying RGB raster layer that
shows a natural-color satellite image. The resulting statistics include the
minimum, maximum, and mean elevations for the burned area, which might
help establish replanting schedules. When you are displaying multiple raster
layers, remember to make the target raster the active layer before computing
the statistics for the polygon. Statistics can be computed for any type of
grayscale or binary raster, but not for RGB raster layers.

You can choose any icon (or design
your own) to launch the Tool Script
and provide text for its ToolTip.

The Area Statistics script is one example
of many possible applications you can
create using an SML Tool Script. This
sample script lets you draw a polygon
in the View window and get a listing of
computed raster statistics for the defined
area. The Tool Script, which is shown
on the other side of this page, automati-
cally provides the graphic tool for draw-
ing the polygon and the Region Statis-
tics window to list the results. You could
customize this script by adding other sta-
tistics computations. You can also use
it as a model for building your own script
that draws a polygon and uses it for some
operation on one or more layers. If you want to create your own Tool

Script, you don’t have to start com-
pletely from scratch. When you create
a new script you are provided with a
script “skeleton”: a series of com-
mented lines that include a number of
predefined functions that will be called
(if used in the script) when the appro-
priate tool action or event occurs (as
explained in the comments preceding
each function). To use a function,
uncomment the lines containing the
start and end of the function definition,
and add code in between to define what
you want the function to do.

Development of this and other sample Tool
Scripts continues at MicroImages. Check
the MicroImages web site for an updated
version incorporating additional features.

surface += .5*sqrt(sqr(yscale*downright*zscale-
yscale*right*zscale)+sqr(xscale*downright*zscale-
xscale*down*zscale)+sqr(xscale*yscale));

cells += 1;
}

CloseRaster(targetRaster);

if (count > 1) {
mean = sum / count;
stdDev = sqrt((sumsqr - sqr(sum) / count) / (count - 1));
area = MyRgn.$Data.GetArea();
perimeter = MyRgn.$Data.GetPerimeter();
centroid = MyRgn.$Data.GetCentroid();
}

cbRedraw();

StatusContextDestroy(context);
StatusDialogDestroy(status);
} # end of cbToolApply

}

func OnInitialize () {
form = CreateFormDialog(“Region Statistics”);
form.marginHeight = 2;
form.marginWidth = 2;
WidgetAddCallback(form.Shell.PopdownCallback, cbClose);

da = CreateDrawingArea(form, 173, 301);
da.topWidget = form;
da.leftWidget = form;
da.rightWidget = form;
WidgetAddCallback(da.ExposeCallback, cbRedraw);

line1 = CreateHorizontalSeparator(form);
line1.topWidget = da;
line1.leftWidget = form;
line1.rightWidget = form;
line1.bottomOffset = 2;

distMenu = CreateUnitOptionMenu(form, “distance_units_c”,cbDistUnits,
2, 0);

distMenu.topWidget = line1;
distMenu.leftWidget = form;

areaMenu = CreateUnitOptionMenu(form, “area_units_c”, cbAreaUnits,
1, 0);

areaMenu.topWidget = distMenu;
areaMenu.leftWidget = form;

line2 = CreateHorizontalSeparator(form);
line2.topWidget = areaMenu;
line2.leftWidget = form;
line2.rightWidget = form;
line2.topOffset = 2;

saveButton = CreatePushButtonItem(“Save As...”, cbSave);

closeButton = CreatePushButtonItem(“Close”, cbClose);

buttonRow = CreateButtonRow(form, saveButton, closeButton);
buttonRow.topWidget = line2;
buttonRow.leftWidget = form;
buttonRow.rightWidget = form;
buttonRow.bottomWidget = form;

tool = ViewCreatePolygonTool(View, “”, “”, “”);
ToolAddCallback(tool.ActivateCallback, cbToolApply);
} # end of OnInitialize

func OnDestroy () {
tool.Managed = 0;
DestroyGC(gc);
DestroyWidget(form);
} # end of OnDestroy

proc cbRedraw() {
local numeric larea, lperimeter, lsurface;

larea = areaScale * area;
lperimeter = distScale * perimeter;
lsurface = areaScale * surface;
if (gc == 0) return;
ActivateGC(gc);

SetColorName(“gray75”);
FillRect(0, 0, da.width, da.height);
SetColorName(“black”);
if (cells > 0) {DrawInterfaceText(sprintf(“Raster: %s\nCells:

%d\nNull Cells: %d\nMinimum: %.2f\nMaximum: %.2f\nMean:
%.2f\nStandard Deviation: %.2f\nArea: %.2f\nPerimeter:
%.2f\nCentroid: %.2f, %.2f\nSurface Area: %.2f”,
rasterName$, count, cells - count, min, max, mean, stdDev, larea,
lperimeter, centroid.x, centroid.y, lsurface), 0, 10);
}

else DrawInterfaceText(sprintf(“Raster: %s\nCells:\nNullCells:
\nMinimum:\nMaximum:\nMean:\nStandardDeviation:\nArea:\nPerimeter:
\nCentroid:\nSurface Area:”, rasterName$), 0, 10);

}

proc cbToolApply(class RegionTool tool) {
if (checkLayer()) {

local numeric sum, sumsqr, xscale, yscale, zscale;
local numeric current, right, down, downright;
local region MyRgn;
local class StatusHandle status;
local class StatusContext context;
cells = 0; min = 0; max = 0; mean = 0; stdDev = 0; sum = 0;
sumsqr = 0; count = 0; surface = 0; area = 0; perimeter = 0;
centroid.x = 0; centroid.y = 0; current = 0; right = 0; down = 0;
downright = 0;
xscale = ColScale(targetRaster);
yscale = LinScale(targetRaster);
zscale = Group.ActiveLayer.zscale;

MyRgn = tool.Region;
MyRgn = RegionTrans(MyRgn, ViewGetTransLayerToScreen(View,

rasterLayer, 1));
MyRgn = RegionTrans(MyRgn, ViewGetTransLayerToView(View,

rasterLayer));
MyRgn = RegionTrans(MyRgn, ViewGetTransMapToView(View,

rasterLayer.Projection, 1));

context = StatusContextCreate(status);
StatusSetMessage(context, “Computing values...”);

foreach targetRaster[lin, col] in MyRgn {
if (!IsNull(targetRaster)) {

if (count == 0) {
max = targetRaster;
min = targetRaster;
}

else if (targetRaster > max) {
max = targetRaster;
}

else if (targetRaster < min) {
min = targetRaster;
}

sum += targetRaster;
sumsqr += sqr(targetRaster);
count += 1;
}

if (!IsNull(targetRaster))
current = targetRaster;

if (!IsNull(targetRaster[lin,col+1]))
right = targetRaster[lin,col+1];

if (!IsNull(targetRaster[lin+1,col]))
down = targetRaster[lin+1,col];

if (!IsNull(targetRaster[lin+1,col+1]))
downright = targetRaster[lin+1,col+1];

surface += .5*sqrt(sqr(yscale*current*zscale-yscale*
right*zscale)+sqr(xscale*current*zscale-xscale*down*zscale)
+sqr(xscale*yscale));

Script for Area Statistics (regstats.sml)

MicroImages, Inc. (402)477-9554 • FAX (402)477-9559 • 206 S. 13th Street, Lincoln, Nebraska 68508-2010 USA • info@microimages.com • October 2000

Macro and Tool Scripts can be created using SML in any TNTmips process that uses a View window (Options / Cus-
tomize from the View window menu bar). These scripts are then available from an icon, which you select or design, on
the toolbar. Sample scripts have been prepared to illustrate how you might use these features, which are available
only in TNTmips 6.4 or later, to assist with specific tasks you perform on a regular basis. If possible, the full script is
printed below for your quick perusal. When a script is too long to fit on one page, key sections are reproduced below.
All sample Tool and Macro Scripts illustrated can be found in their entirety on your TNT products CD-ROM in the folder
in which you installed TNTmips 6.4. These scripts, among others, can be downloaded from the SML script exchange
at www.microimages.com/sml/ftpsmllink/TNT_Products_V6.4_CD.

scales the values to specified units

estimates surface area by
adding areas of triangles
created by current cell and
cell below, cell to right,
and cell to lower right.

redraws Region Statistics
window when new
statistics are computed

main tool procedure, called
within OnInitialize function

creates status dialog

defines local variables for
statistics calculation

computes statistics
for the polygon

destroys the tool
when necessary

destroys the status dialog when
computations are complete

is called the first time
the tool is activated;
creates the graphic
tool and dialog

avoids division by zero
when computing mean
and standard deviation.

creates drawing area
for dialog window

creates separator between
statistics and menus

creates menu for selecting units

creates separator between
menus and buttons

creates
buttons

creates button row

creates standard
polygon drawing
tool

Region Statistics
Sample SML Tool Script

The Region Statistics tool script demonstrates how you
can design a custom tool to visually select polygons and
convert them to a temporary region to define the area
for action on another coregistered layer. A tool with
these functions could then use the region in a variety of
operations. In this example, the region is used in the
simple operation of extracting statistics from a raster
object. This same tool could be modified to perform
many other functions with the regions it creates. For
example, it could extract points, lines, or polygons from
another vector layer or use the extract functions to cre-
ate rasters of the regions.

The Region Statistics script lets you select one or more
vector polygons then calculates a set of statistics from
an underlying raster for the area covered by the selected
polygon(s). The top vector layer is used for polygon
selection and the statistics are calculated for the bottom
raster layer. The statistics calculated include the num-
ber of cells, the number of null cells, the minimum and

MicroImages, Inc. (402)477-9554 • FAX (402)477-9559 • 206 S. 13th Street, Lincoln, Nebraska 68508-2010 USA • info@microimages.com • October 2000

statistics for a
single polygon

statistics for a multi-
polygon region

maximum cell values, the mean cell value, the standard deviation of cell values,
the area of the region, its perimeter length, the coordinates of the centroid, and a
surface area estimation. You can choose from any of the 25 length units and 13
area units standardly available throughout the TNT products for viewing the pe-
rimeter and area statistics. You can also save the calculated statistics as a text
file. If you select the same text file again, the current statistics will be appended
to earlier entries.

This custom script reports the same
statistics as the Area Statistics tool
script. The method of area defini-
tion differs between the two—one
has you draw the area and the other
uses selected polygons to create a
region. Together these scripts pro-
vide an excellent example of how to
use the sample scripts provided by
MicroImages to put together the
pieces you need for your own cus-
tom tool. Think of the sample macro
and tool scripts provided as a series
of modules to be reused for the same
or different purposes in a script that
creates the custom tool you want. This script, for example, has modules concerned with selecting polygons, making a region
from selected polygons, using a status window, calculating standard raster statistics for a local area, and estimating surface
area from an elevation raster.

MicroImages, Inc. (402)477-9554 • FAX (402)477-9559 • 206 S. 13th Street, Lincoln, Nebraska 68508-2010 USA • info@microimages.com • October 2000

Macro and Tool Scripts can be created using SML in any TNTmips process that uses a View window (Options /
Customize from the View window menu bar). These scripts are then available from an icon, which you select or
design, on the toolbar. Sample scripts have been prepared to illustrate how you might use these features, which are
available only in TNTmips 6.4 or later, to assist with specific tasks you perform on a regular basis. If possible, the full
script is printed below for your quick perusal. When a script is too long to fit on one page, key sections are repro-
duced below. The sample Tool Script illustrated can be downloaded from the SML script exchange at
www.microimages.com/sml/ftpsmllink/TNT_Products_V6.4_CD.

(see regstatp.sml for full script)

Partial Script for Region Statistics (regstatp.sml)

func checkLayer() {
local boolean valid = false;

if (Group.LastLayer.Type == “Vector”) {
vectorLayer = Group.LastLayer;
DispGetVectorFromLayer(targetVector, vectorLayer);
if (targetVector.$Info.NumPolys > 0) {

vectorName$ = vectorLayer.Name;
valid = true;
}

else vectorName$ = “No polygons!”;
}

else vectorName$ = “Not a vector!”;
if (Group.FirstLayer.Type == “Raster”) {

rasterLayer = Group.FirstLayer;
DispGetRasterFromLayer(targetRaster, rasterLayer);
if (targetRaster.$Info.Type != “binary” and

targetRaster.$Info.Type != “4-bit unsigned” and
targetRaster.$Info.Type != “8-bit signed” and
targetRaster.$Info.Type != “8-bit unsigned” and
targetRaster.$Info.Type != “16-bit signed” and
targetRaster.$Info.Type != “16-bit unsigned” and
targetRaster.$Info.Type != “32-bit signed” and
targetRaster.$Info.Type != “32-bit unsigned” and
targetRaster.$Info.Type != “32-bit float” and
targetRaster.$Info.Type != “64-bit signed” and
targetRaster.$Info.Type != “64-bit unsigned” and
targetRaster.$Info.Type != “64-bit float”) {
rasterName$ = “Type not supported!”;
valid = false;
}

else
rasterName$ = rasterLayer.Name;

}
else {

rasterName$ = “Not a raster!”;
valid = false;
}

return valid;
}

proc cbRedraw() {
local numeric larea, lperimeter, lsurface;

larea = areaScale * area;
lperimeter = distScale * perimeter;
lsurface = areaScale * surface;
if (gc == 0) return;
ActivateGC(gc);

SetColorName(“gray75”);
FillRect(0, 0, da.width, da.height);
SetColorName(“black”);
if (cells > 0) {

DrawInterfaceText(sprintf(“Vector: %s\nRaster: %s\nCells: %d\nNull Cells: %d\nMinimum:
%.2f\nMaximum: %.2f\nMean: %.2f\nStandard Deviation: %.2f\nArea: %.2f\nPerimeter:
%.2f\nCentroid: %.2f, %.2f\nSurface Area: %.2f”,
vectorName$, rasterName$, count, cells - count, min, max, mean, stdDev, larea, lperimeter,
centroid.x, centroid.y, lsurface), 0, 10);
}

else DrawInterfaceText(sprintf(“Vector: %s\nRaster: %s\nCells:\nNull
Cells:\nMinimum:\nMaximum:\nMean:\nStandard Deviation:\nArea:\nPerimeter:\nCentroid:\nSurface
Area:”,vectorName$, rasterName$), 0, 10);

}

proc cbToolApply(class pointTool tool) {
if (checkLayer()) {

local numeric sum, sumsqr, xscale, yscale, zscale;
local numeric current, right, down, downright, elemNum;
local region MyRgn;
local class POINT2D point;
local class StatusHandle status;
local class StatusContext context;
cells = 0; min = 0; max = 0; mean = 0; stdDev = 0; sum = 0; sumsqr = 0; count = 0; surface = 0;
area = 0; perimeter = 0;
centroid.x = 0; centroid.y = 0; current = 0; right = 0; down = 0; downright = 0;
xscale = ColScale(targetRaster);
yscale = LinScale(targetRaster);
zscale = Group.FirstLayer.zscale;

point.x = tool.Point.x;
point.y = tool.Point.y;

point = TransPoint2D(point, ViewGetTransViewToScreen(View, 1));
point = TransPoint2D(point, ViewGetTransMapToView(View, vectorLayer.Projection, 1));

elementNum = FindClosestPoly(targetVector, point.x, point.y, GetLastUsedGeorefObject(targetVector));

if (elementNum > 0) {
MyRgn = ConvertVectorPolyToRegion(targetVector, elementNum,
GetLastUsedGeorefObject(targetVector));

if (regionMode$ == “plus”) {
if (numRegions > 0) {

MyRgn = RegionOR(reg, MyRgn);
}

numRegions += 1;
vectorLayer.Poly.HighlightSingle(elementNum, 2);
}

else {
if (numRegions > 1) {

MyRgn = RegionSubtract(reg, MyRgn);
numRegions -= 1;
}

else {
MyRgn = RegionXOR(MyRgn, MyRgn);
numRegions = 0;
}

vectorLayer.Poly.HighlightSingle(elementNum, 3);
}

reg = CopyRegion(MyRgn);

status = StatusDialogCreate(form);
context = StatusContextCreate(status);
StatusSetMessage(context, “Computing values...”);

foreach targetRaster[lin, col] in reg {
if (!IsNull(targetRaster)) {

if (count == 0) {
max = targetRaster;
min = targetRaster;
}

else if (targetRaster > max) {
max = targetRaster;
}

else if (targetRaster < min) {
min = targetRaster;
}

sum += targetRaster;
sumsqr += sqr(targetRaster);
count += 1;
}

if (!IsNull(targetRaster))
current = targetRaster;

if (!IsNull(targetRaster[lin,col+1]))
right = targetRaster[lin,col+1];

if (!IsNull(targetRaster[lin+1,col]))
down = targetRaster[lin+1,col];

if (!IsNull(targetRaster[lin+1,col+1]))
downright = targetRaster[lin+1,col+1];

surface += .5*sqrt(sqr(yscale*current*zscale-yscale*right*zscale)
+sqr(xscale*current*zscale-xscale*down*zscale)
+sqr(xscale*yscale));

surface += .5*sqrt(sqr(yscale*downright*zscale-yscale*right*zscale)
+sqr(xscale*downright*zscale-xscale*down*zscale)
+sqr(xscale*yscale));

cells += 1;
}

CloseRaster(targetRaster);

if (count > 1) {
mean = sum / count;
stdDev = sqrt((sumsqr - sqr(sum) / count) / (count - 1));
area = reg.$Data.GetArea();
perimeter = reg.$Data.GetPerimeter();
centroid = reg.$Data.GetCentroid();
}

checks to see if
layers are valid

gets layer name if top
layer is vector, gives
error if not

scales the values to
specified units

gets layer name if
bottom layer is valid
raster type, gives
error if not

redraws Region
Statistics window
when new statistics
computed

procedures after right mouse
button click (tool applied)

defines local
variables for statistics
calculations

gets point
coordinates of tool

convert selected
polygon(s) to region and
transform to appropriate
coordinate system

creates status dialog

calculates statistics
for the region

method for
estimating
surface area

additional statistics
calculated while
avoiding division
by zero

Run Browser
Sample SML Tool Script

The Run Browser script provides an example of a custom
script used to launch an external application. The web
browser was chosen as the example program because it is
the one type of external program that all clients are most
likely to have so you can run the script. The function that
launches the external application is the same for any file
type; it simply uses the file name provided to determine

MicroImages, Inc. (402)477-9554 • FAX (402)477-9559 • 206 S. 13th Street, Lincoln, Nebraska 68508-2010 USA • info@microimages.com • October 2000

which application to launch. For example, file names that end in .ppt will launch
Microsoft PowerPoint.

The Run Browser script lets you select elements in a vector or cell values in a
raster layer, choose an associated URL for a web site to visit, then launch your

Internet browser and go to the selected site. The associations between element attributes
or cell values and URLs are specified in a separate text file, which means there are two
files needed to use this tool (urls.sml and url.txt). The text file specifically lists the name
and description for each object with URL links. Any number of objects can be listed in

the file, but if the active layer in the group or layout does not contain one of the
objects named, you get a “File not found” message instead of a list of URLs.
To get results when you use this tool without altering the sample text file, you
need to have either CBSOILS_LITE from the CB_SOILS Project File (CB_DATA folder)
or CLS_MAXLIKE from the BERCRPCL Project File (BEREA folder) as the active layer.
Both Project Files are found with the litedata on your TNT products CD-ROM
or with the TNTlite datasets on MicroImages’ web site.

You can associate one or more URLs with each attribute or cell value. You can
also associate the
same URL with dif-
ferent attributes if
desired. The sample
text file associates
polygons of soil

type KeB, JmD, or Bd in CBSOILS_LITE with pages about the correspond-
ing soil type at Iowa State University’s web site. You could, of course,
associate all the soil types with appropriate pages. To use the tool, left-

click on the polygon or
cell desired then right-
click to confirm the se-
lect tool is correctly
positioned. The

URL(s) associ-
ated with where
you clicked appear in the Select a URL window. Choose the desired
URL, then click on the Launch Browser button. Your Internet browser
will open if not open already and go to the designated web site and speci-
fied page.

You can easily add URL links for your own objects to this file. Toward
the bottom of the Select a URL window there is an Action panel that lets
you choose between Scan and Add. Switch to Add, and for a vector, left-
click and right-click on an element of the type you want to link to. You
are then prompted to select a table and field for the attribute and finally,
to enter the URL you want elements with the selected attribute value to
link to. For a raster, you are simply prompted to enter the URL to add for
the cell value you clicked on. The necessary text with the proper syntax
is entered in the url.txt file. You can then toggle on Scan for the action,
select the cell or polygon, and go to the designated web site.

These two web sites are
found when you click on
any cell that has been
classified as corn.

Choose the element type for links
when the active layer is a vector.

[CBSOILS_Lite : Crow Butte soil type polygon overlay]
{poly CLASS Class KeB}
www.statlab.iastate.edu/soils/osd/dat/K/KEITH.html
{poly CLASS Class JmD}
www.statlab.iastate.edu/soils/osd/dat/J/JAYEM.html
{poly CLASS Class Bd}
www.statlab.iastate.edu/soils/osd/dat/B/BANKARD.html

[CLS_MAXLIKE : Class raster from 6_06, 7_30, & 10_10 (Green, Red, NIR6)]
{3}

www.microimages.com
www.wheatworld.org
www.oznet.ksu.edu/wheatpage/
{7}
{5}
www.agpub.on.ca/text/july16/crop_1.htm
{7}
www.corn.org
{5}
www.ag.uiuc.edu/~food-lab/soy/soy.html

proc cbLayer() {
if (Group.ActiveLayer.Type == “Raster”) {

vectorLabel.Sensitive = 0;
pointButton.Sensitive = 0;
nodeButton.Sensitive = 0;
lineButton.Sensitive = 0;
polyButton.Sensitive = 0
}

else {
vectorLabel.Sensitive = 1;
polyButton.Sensitive = 1;
lineButton.Sensitive = 1;
nodeButton.Sensitive = 1;
pointButton.Sensitive = 1;
}

cbRedraw();
}

proc cbOpen() {
filepath$ = GetInputFileName(filepath$, “Open URL file”, “txt”);
cbRedraw();
}

proc cbGo() {
local string url$;
url$ = list.GetItemAtPos(list.GetFirstSelectedPos());
if (list.SelectedItemCount > 0 and url$!= “No URLs found!” and url$!= “Type not supported!”

and url$!= “No element found!” and url$!= “File not found!”)
RunAssociatedApplication(url$);

}

proc clearHighlight() {
if (Group.ActiveLayer.Type == “Vector”) {

local class VECTORLAYER vl;
vl = Group.ActiveLayer;
if (mode$ == “point”) {

vl.Point.HighlightSingle(1);
vl.Point.HighlightSingle(1, 3);
}

else if (mode$ == “node”) {
vl.Node.HighlightSingle(1);
vl.Node.HighlightSingle(1, 3);
}

else if (mode$ == “line”) {
vl.Line.HighlightSingle(1);
vl.Line.HighlightSingle(1, 3);
}

else {
vl.Poly.HighlightSingle(1);
vl.Poly.HighlightSingle(1, 3);
}

}
}

proc cbClose() {
pointTool.Managed = 0;
DialogClose(form);
if (setDefaultWhenClose) {

setDefaultWhenClose = false;
View.SetDefaultTool();
}

}
proc cbModeChanged() {

if (pointButton.Set == 1) {
mode$ = “point”;
}

else if (nodeButton.Set == 1) {
mode$ = “node”;
}

MicroImages, Inc. (402)477-9554 • FAX (402)477-9559 • 206 S. 13th Street, Lincoln, Nebraska 68508-2010 USA • info@microimages.com • October 2000

Macro and Tool Scripts can be created using SML in any TNTmips process that uses a View window (Options /
Customize from the View window menu bar). These scripts are then available from an icon, which you select or
design, on the toolbar. Sample scripts have been prepared to illustrate how you might use these features, which are
available only in TNTmips 6.4 or later, to assist with specific tasks you perform on a regular basis. If possible, the full
script is printed below for your quick perusal. When a script is too long to fit on one page, key sections are repro-
duced below. The sample Tool Script illustrated can be downloaded from the SML script exchange at
www.microimages.com/sml/ftpsmllink/TNT_Products_V6.4_CD.

(see urls.sml for full script)

object name
and description

Reference File for Run Browser Script (url.txt)
URLs linked
to cell value 3

element type
and attribute
value sppecified

URL cell values linked to
following URL(s)

Partial Script for Run Browser (urls.sml)
else if (lineButton.Set == 1) {

mode$ = “line”;
}

else mode$ = “poly”;
}

proc cbActionChanged() {
if (scanButton.Set == 1) {

action$ = “scan”;
}

else action$ = “add”;
}

proc cbToolApply(class RegionTool polyTool) {
list.DeleteAllItems();

local string url$, layerName$, temp$, temp2$, item$, element$, table$, field$, value$;
local class FILE reffile;
local class LAYER layer;
local numeric numTok, i, j, num, start;
local class POINT2D point;
local class StatusHandle status;
local class StatusContext context;
layer = Group.ActiveLayer;

if (layer.Type == “Raster” or layer.Type == “Vector”) {
point.x = pointTool.Point.x;
point.y = pointTool.Point.y;

Set up layer, object, layer name, and point transformations.
if (layer.Type == “Raster”) {

point = TransPoint2D(point, ViewGetTransLayerToScreen(View, layer, 1));
DispGetRasterFromLayer(rv, layer);
layerName$ = “[“ + rv.$Info.Name + “ : “ + rv.$Info.Desc + “]”;
}

else if (layer.Type == “Vector”) {
point = TransPoint2D(point, ViewGetTransViewToScreen(View, 1));
point = TransPoint2D(point, ViewGetTransMapToView(View, layer.Projection, 1));
local class VECTORLAYER vl;
vl = layer;
DispGetVectorFromLayer(vv, layer);
layerName$ = “[“ + vv.$Info.Name + “ : “ + vv.$Info.Desc + “]”;
}

reffile = fopen(filepath$);

start = 0;
while(!feof(reffile)) {

url$ = fgetline$(reffile);
start += 1;
if (url$ == layerName$)

break;
}

if (url$!= layerName$)
list.AddItem(“File not found!”);

url$ = “”;
while(!feof(reffile)) {

temp$ = fgetline$(reffile);
url$ = url$ + temp$ + “\n”;
if (temp$ == “”)

break;
}

fclose(reffile);

Launch Browser
button functions

sets window options
when active layer
changes

Open File button
functions

unhighlights
selected
element if
active layer
is vector

Close button
functions

The RunAssociated Application
function launches whatever
application would be used if you
double-clicked on the file on your
desktop. If the file name ends in
.doc, it will launch Microsoft Word; if
the file name ends in .pdf, it will
launch Adobe Acrobat or Acrobat
Reader, whichever would be used if
you double-clicked on the file on
your desktop.

changesvector
selection mode

sets Action
mode

right mouse button click to confirm
selection does the following

clears the list

sets up local
variables

keep going if active
layer is raster or vector

get coordinates of selected point

determine that active layer
is named in reference file

retreive URL choices
for the active layer

close the
reference file

Find Streets
Sample SML Tool Script

The Find Streets tool script locates and highlights streets
you ask it to search for. You enter all or part of the street
name to search for, and the tool script produces a list of all
streets containing the text you entered. You then select the
street you want to find and the script redraws the view at
1:30000 with the lines that form the street highlighted and
centered in the View window. If all selected lines will not
fit in the View at 1:30000, the View is redrawn at a smaller
scale that fully contains the lines.

MicroImages, Inc. (402)477-9554 • FAX (402)477-9559 • 206 S. 13th Street, Lincoln, Nebraska 68508-2010 USA • info@microimages.com • October 2000

The New Search
button opens a
Prompt window so
you can type in all
or part of the
name of the street
you want to locate.
Click OK, and all
streets that match
the search criteria are listed. Double-click on the name of the street
you want to find or click on the Highlight the street icon.

All lines that form the street are highlighted. The highlight colors for these lines are your designated selected and
active element colors (Options / Colors). You may need to change these colors to take into account the drawing
styles of the vector lines, which are purple, red, or black in this vector object. Thus, the default red highlight color

could not be distinguished from unhighlighted lines in some
cases. For the purposes of this tool, you may want to set the
active and selected colors to be the same so that the selected

street has a uniform appearance. The highlight color
for the illustrations on this page is green.

The name of the town and the zip code are also pro-
vided in the list of streets found. The script assumes there
are not two separate streets in the same zip code with the
same name. If, however, it turns out that the part of the
street name you entered belongs to two different streets in
the same zip code (one Main Street, the other Main Drive,
for example), only the first encountered is listed but both
are highlighted when that selection is made.

RTE D’HYERES

VCHE D’HYERES

Both in ZIP 83047

Note map scale
smaller than
1:30000 to fit all
selected in View.

The script automatically
pans to the selected street
when you double click on
the listing or click on the
Highlight the street icon.
The list is cleared when
you click on New Search.

This custom script requires
the French data sets to run.
It is provided as a sample
script that can be modified
for your own data.

#Retrieve the table containing the names of the towns
array townnames[ncode]; #VTown.point[townname[i]].ZONE_HABITAT.INSEE ==

V.line[codelist[i,2]].TRONCON_ROUTE.INSEE_COMD;
npts = NumVectorPoints(VTown);
ResizeArrayClear(townnames, ncode);

for i=1 to ncode {
curcode = V.line[codelist[i,2]].TRONCON_ROUTE.INSEE_COMD;
j = 1;
found = false;
townnames[i] = 0; #init
while (!found and j<=npts) {

if (VTown.point[j].ZONE_HABITAT.INSEE == curcode) {
townnames[i] = j;
found = true;

}
j = j+1;

}
if (townnames[i] == 0) { #error

PopupMessage(“Town name corresponding to “ +
NumToStr(curcode) + “ not found”);

}
}#i

for i = 1 to ncode {
name$ = V.line[codelist[i,2]].TRONCON_ROUTE.NOM_RUE_D$;
zip$ = “ (“ + NumToStr(codelist[i,1]) + “)”;
town$ = “, “ + street$ =
 toupper$(VTown.point[townnames[i]].ZONE_HABITAT.TOPONYME$);
poslist.AddItem(name$ + town$ + zip$);

}
poslist.SelectPos(1);

}#DoNew

Close the window, switching to default tool

proc DoClose () {
if (setDefaultWhenClose) {

setDefaultWhenClose = false;
View.SetDefaultTool();

}
}

Called the first time the tool is activated.

func OnInitialize () {
dlgform = CreateFormDialog(“Search for a street”,View.Form);
WidgetAddCallback(dlgform.Shell.PopdownCallback,DoClose);
dlgform.Width = 200;

class PushButtonItem btnItemNew;
class PushButtonItem btnItemZoom;
btnItemNew = CreatePushButtonItem(“New search”,DoNew);
btnItemNew.IconName = “new”;
btnItemZoom = CreatePushButtonItem(“Highlight the street”,DoZoom);
btnItemZoom.IconName = “apply_query”;
btnItemClose = CreatePushButtonItem(“Close”,DoClose);
btnItemClose.IconName = “delete”;

Icon button rows are automatically attached to their parent form on the left
and right. The “right” widget is unattached by setting the attachment to itself.

class XmRowColumn btnrowaction;
btnrowaction = CreateIconButtonRow(dlgform,btnItemNew,btnItemZoom);
btnrowaction.TopWidget = dlgform;
btnrowaction.TopOffset = 4;

btnrowaction.LeftWidget = btnrowaction;
btnrowaction.LeftOffset = 8;
btnrowaction.RightOffset = 4;

class XmSeparator btnsep;
btnsep = CreateHorizontalSeparator(dlgform);
btnsep.TopWidget = btnrowaction;
btnsep.TopOffset = 4;
btnsep.LeftWidget = dlgform;
btnsep.RightWidget = dlgform;

poslist = CreateScrolledList(dlgform);

Zoom to selected position
proc DoZoom () {

#Finding the element numbers of this street (not sure that they are sorted)
local selpos;
if (nline == 0) return;

selpos = poslist.GetFirstSelectedPos();
array streetline[1];
nstreetline = 0;

for i=1 to nline {
curcode = V.line[linelist[i]].TRONCON_ROUTE.INSEE_COMD;
if (curcode == codelist[selpos,1]) {

nstreetline = nstreetline+1;
ResizeArrayPreserve(streetline, nstreetline);
streetline[nstreetline] = linelist[i];

}
}
ViewSetMessage(View, NumToStr(nstreetline) + “ lines found for this street”);

#Zoom in to the lines
class VECTORLAYERLINES vll;
vll = layer.Line;
vll.HighlightMultiple(nstreetline, streetline);
View.DisableRedraw = 1;
layer.ZoomToHighlighted();
if (ViewGetMapScale(View) < 30000) {

ViewSetMapScale(View, 30000);
}
View.DisableRedraw = 0;
ViewRedraw(View);

}#DoZoom

New Request

proc DoNew () {
poslist.DeleteAllItems();
nline = 0;

ncode = 0;

#asking to enter the name of a street (or a word contained in it)
street$ = PopupString(“Enter all or part of the name of the street to search for”, “”);
if (street$ == “”) return;
street$ = toupper$(street$);

#looking for a line containing street$ in its NOM_RUE_D or NOM_RUE_G attributes of
the TRONCON_ROUTE table

for i=1 to NumVectorLines(V) {
#class DATABASE DB = V.line[i].TRONCON_ROUTE;
if (V.line[i].TRONCON_ROUTE.NOM_RUE_D$ contains street$ or
 V.line[i].TRONCON_ROUTE.NOM_RUE_G$ contains street$) {

nline = nline+1;
linelist[nline] = i;

}#if
}#i
ViewSetMessage(View, NumToStr(nline) + “ lines found”);

if (nline == 0) { #no element corresponding found
PopupMessage(“No streets found containing this word!”);
return;

}

#Some streets are found : find the different ones (by zip code)
#Assertion : not 2 streets with the same name in a town
#Limits : don’t take into account the streets separating 2 towns (the right zip code

INSEE_COMD and the left one INSEE_COMG are different)
for i=1 to nline {

found = false;
curcode = V.line[linelist[i]].TRONCON_ROUTE.INSEE_COMD;

 j=1;
 while (!found and j<=ncode) { #looks if code already found

if (codelist[j,1] == curcode) {
found = true;
}#if
j = j+1;

 }#while
if (!found) { #new street

ncode = ncode+1;
codelist[ncode,1] = curcode;
codelist[ncode,2] = linelist[i];

}#if
}#i

Partial Script for Find Streets (street.sml)

MicroImages, Inc. (402)477-9554 • FAX (402)477-9559 • 206 S. 13th Street, Lincoln, Nebraska 68508-2010 USA • info@microimages.com • October 2000

Macro and Tool Scripts can be created using SML in any TNTmips process that uses a View window (Options /
Customize from the View window menu bar). These scripts are then available from an icon, which you select or
design, on the toolbar. Sample scripts have been prepared to illustrate how you might use these features, which are
available only in TNTmips 6.4 or later, to assist with specific tasks you perform on a regular basis. If possible, the full
script is printed below for your quick perusal. When a script is too long to fit on one page, key sections are repro-
duced below. The sample Tool Script illustrated can be downloaded from the SML script exchange at
www.microimages.com/sml/ftpsmllink/TNT_Products_V6.4_CD.

(see street.sml for full script)

zooms to
selected
elements

clears list,
prompts for
new search
street, and
finds lines

creates
search
dialog

closes search
window and acti-
vates default tool

reports total
number of
lines found by
search

Flow Path

MicroImages, Inc. (402)477-9554 • FAX (402)477-9559 • 206 S. 13th Street, Lincoln, Nebraska 68508-2010 USA • info@microimages.com • October 2000

Sample SML Tool Script

Development of this and other sample Tool Scripts continues
at MicroImages. Check the MicroImages web site for an
updated version incorporating additional features.

Use the toggle buttons to
choose which watershed
features you want computed
and displayed.

Use the Save button to save the
computed watershed features
as vector objects in a Project
File.

If the Display group
has more than one
layer, make sure
that the elevation
raster is the first
layer in the group
when you run the
Flow Path Tool
Script. In the example to the right, an RGB raster layer showing
a natural-color satellite image is displayed on top of the DEM.
The extents of the DEM layer are computed by the script and
displayed as a red rectangle. Use this rectangle as a guide to
placing seed points when the overlying image extends beyond
the DEM layer in one or more directions.

The Flow Path sample script shows how powerful custom
analysis procedures can be performed on layers in the
current view using an SML Tool Script. The script uses
new SML watershed functions that operate on an eleva-
tion raster (DEM) in the View window. When you launch
the script, it opens a FlowPath and Buffer Zone window
and creates a graphic tool that allows you to place a wa-
tershed seed point on the DEM or on an overlying image
layer. Depending on the options you have selected in the
FlowPath window, the script computes and displays the
upstream basin (area with flow toward the seed point),
the flow path downstream, and a buffer zone around the
flow path. You can move the seed point and repeat the
analysis as many times as you like and save the computed
elements at any time.

One application of this script is the evaluation of surface
water pollution hazards. If the seed point represents a
location where contamination has been detected, the up-
stream basin is the area of potential sources. If the seed
point represents a contaminant spill, the flow path and buffer
zone indicate the downstream area that is at risk.

upstream basin

seed point

flow path with
buffer zone

btnsep.TopWidget = PromptDistance;
btnsep.TopOffset = 4;
btnsep.LeftWidget = dlgform;
btnsep.RightWidget = dlgform;

class PromptStr Promptflow;
class PromptStr Promptzone;
class PromptStr Promptbasin;
class PromptStr Promptborder;

Promptflow = CreatePromptStr(dlgform,”Flowpath Color”,15,”blue”);
Promptzone = CreatePromptStr(dlgform,”Buffer Color “,15,”yellow”);
Promptbasin =CreatePromptStr(dlgform,”Basin Color “,15,”green”);
Promptborder=CreatePromptStr(dlgform,”Border Color “,15,”red”);

Promptflow.TopWidget = btnsep;
Promptflow.TopOffset = 4;
Promptflow.LeftWidget = dlgform;

Promptzone.TopWidget = Promptflow;
Promptzone.LeftWidget = dlgform;
Promptbasin.TopWidget = Promptzone;
Promptbasin.LeftWidget = dlgform;
Promptborder.TopWidget = Promptbasin;
Promptborder.LeftWidget = dlgform;
} # end of OnInitialize

proc DoFlowPath() {
View.DisableRedraw = 1;
if ((btnFlow.Set == 0) and (btnBuffer.Set == 0) and

(btnBasin.Set == 0)) {
return;

}
if ((btnFlow.Set == 1) or (btnBuffer.Set == 1) and

(btnBasin.Set == 1)) {
WatershedComputeElements(w,seedx,seedy,numpts,”FlowPath,Basin”);

}
if ((btnBasin.Set == 1) and (btnBuffer.Set == 0) and

(btnFlow.Set == 0)){
WatershedComputeElements(w,seedx,seedy,numpts,”Basin”);

}
if (btnBasin.Set == 0) {

WatershedComputeElements(w,seedx,seedy,numpts,”FlowPath”);
}

if ((btnFlow.Set == 1) or (btnBuffer.Set == 1)) {
WatershedGetObject(w,”VectorUserFlowPath”,userflowpathFilename$,

userflowpathObjname$);
OpenVector(VectIn,userflowpathFilename$,userflowpathObjname$);
}

if (btnFlow.Set == 1) {
VecFlow = GroupQuickAddVectorVar(Group,VectIn);
VecFlow.Line.NormalStyle.Color.name = Promptflow.value;

}

if (btnBuffer.Set == 1) {
CreateTempVector(Buffer);
CreateTempVector(TempBuffer);
TempBuffer = VectorToBufferZone(VectIn,”line”,

PromptDistance.value,”meters”);
Buffer = VectorExtract(VecBoundary,TempBuffer,”InsideClip”);
VecBuf = GroupQuickAddVectorVar(Group,Buffer);
VecBuf.Line.NormalStyle.Color.name = Promptzone.value;
}

if (btnBasin.Set == 1) {
WatershedGetObject(w,”VectorUserBasin”,userBasinFilename$,

userBasinObjname$);
OpenVector(BasinVector,userBasinFilename$,userBasinObjname$);
BasinLayer = GroupQuickAddVectorVar(Group,BasinVector);
BasinLayer.Line.NormalStyle.Color.name = Promptbasin.value;

}

BoundaryLayer.Line.NormalStyle.Color.name = Promptborder.value;
View.DisableRedraw = 0;
ViewRedrawIfNeeded(View);
haslayers = 1;
} # end of DoFlowPath

array seedx[10]; array seedy[10];
class WATERSHED w; numeric numpts;
class RASTER DEM; numeric firstpass;
class POINT2D pt; class PointTool point_tool;
class VECTORLAYER VecBuf; class RasterLayer DEMLayer;
class VECTORLAYER VecFlow; numeric haslayers;
class VECTORLAYER BasinLayer; class XmForm dlgform;
class VECTORLAYER BoundaryLayer; class VECTOR VectIn;
class VECTOR VecBoundary; array xPoints[10],yPoints[10];
numeric xMax,yMax,xMin,yMin; class PromptNum PromptDistance;

func OnInitialize() {
if (Group.FirstLayer.Type == “Raster”) {

DispGetRasterFromLayer(DEM,Group.FirstLayer);
DEMLayer = Group.FirstLayer;
}

else {
PopupString(“First Layer must be a raster object for Watershed

Toolscript”);
WaitForExit();
}

demFilename$ = GetObjectFileName(DEM);
demInode = GetObjectNumber(DEM);
demObjname$ = GetObjectName(demFilename$,demInode);

w = WatershedInit(demFilename$,demObjname$);

WatershedCompute(w,”FillAllDepressions”);

firstpass = 1; haslayers = 0; numpts = 1;

dlgform = CreateFormDialog(“FlowPath and Buffer Zone”,View.Form);
WidgetAddCallback(dlgform.Shell.PopdownCallback,DoClose);

class PushButtonItem btnItemSave;
class PushButtonItem btnItemRemove;
class PushButtonItem btnItemSet;
class PushButtonItem btnItemClose;

btnItemSave = CreatePushButtonItem(“Save Output Layers...”,DoSave);
btnItemSave.IconName = “save”;
btnItemRemove = CreatePushButtonItem(“Remove Output Layers”,

cbDoRemove);
btnItemRemove.IconName = “remove_sel”;
btnItemSet = CreatePushButtonItem(“Set Number of Seedpoints...”,

DoSet);
btnItemSet.IconName = “apply”;
btnItemClose = CreatePushButtonItem(“Close”,DoClose);
btnItemClose.IconName = “delete”;

class XmRowColumn btnrowaction;
btnrowaction = CreateIconButtonRow(dlgform,btnItemSave,

btnItemRemove,btnItemSet,btnItemClose);
btnrowaction.TopWidget = dlgform;
btnrowaction.RightWidget = dlgform;
btnrowaction.LeftWidget = dlgform;

class XmToggleButton btnFlow;
class XmToggleButton btnBasin;
class XmToggleButton btnBuffer;

btnFlow = CreateToggleButton(dlgform,”Flow Path”);
btnBasin = CreateToggleButton(dlgform,”Upstream Basin”);
btnBuffer = CreateToggleButton(dlgform,”Buffer Zone”);
PromptDistance = CreatePromptNum(dlgform,”Buffer Distance”,

5,0,100);
btnFlow.Set = 1; btnBasin.Set = 1; btnBuffer.Set = 1;

btnFlow.TopWidget = btnrowaction;
btnFlow.LeftWidget = dlgform;
btnBasin.TopWidget = btnFlow;
btnBasin.LeftWidget = dlgform;
btnBuffer.TopWidget = btnBasin;
btnBuffer.LeftWidget = dlgform;
PromptDistance.TopWidget = btnBuffer;
PromptDistance.LeftWidget = dlgform;

class XmSeparator btnsep;
btnsep = CreateHorizontalSeparator(dlgform);

Script for Flow Path (FlowPath.sml)

MicroImages, Inc. (402)477-9554 • FAX (402)477-9559 • 206 S. 13th Street, Lincoln, Nebraska 68508-2010 USA • info@microimages.com • October 2000

Macro and Tool Scripts can be created using SML in any TNTmips process that uses a View window (Options /
Customize from the View window menu bar). These scripts are then available from an icon, which you select or
design, on the toolbar. Sample scripts have been prepared to illustrate how you might use these features, which are
available only in TNTmips 6.4 or later, to assist with specific tasks you perform on a regular basis. If possible, the full
script is printed below for your quick perusal. When a script is too long to fit on one page, key sections are repro-
duced below. All sample Tool and Macro Scripts illustrated can be found in their entirety on your TNT products CD-
ROM in the folder in which you installed TNTmips 6.4. These scripts, among others, can be downloaded from the SML
script exchange at www.microimages.com/sml/ftpsmllink/TNT_Products_V6.4_CD.

variable
declarations

initializes watershed
object (w); compute
depressionless DEM

creates “FlowPath
and Buffer Zone”
dialog window

computes flow path,
buffer zone, and basin
originating at seed point
(depending on options
selected in dialog)

is called the first
time the tool is
activated

computes optional buffer zone
around flow path and add to view

adds basin vector to view

adds flow path vector to view

MicroImages, Inc. (402)477-9554 • FAX (402)477-9559 • 206 S. 13th Street, Lincoln, Nebraska 68508-2010 USA • info@microimages.com • April 2001

Sample SML Tool Script

The patch, which is the basic unit of landscape ecology, is a
piece of the landscape that is considered homogeneous at the
scale of a particular study. A landscape, or area of interest, is
a mosaic of patches of different types. Patch type is equiva-
lent to a class in TNTmips terminology (patches of a single

type in the landscape belong to the same class).

In order to study landscape function and change, you need to
be able to quantify landscape structure. The FRAGSTATS pro-
gram was developed for this purpose by Kevin McGarigal and
Barbara Marks. FRAGSTATS calculates a number of statistics for
each patch, for all the patches of a single class, and for the

landscape as a whole. FRAGSTATS is concerned with both landscape composition and landscape configuration.
Landscape composition addresses the variety and abundance of patches within the landscape, while landscape
configuration is concerned with physical distribution and spatial character of patches.

FRAGSTATS runs under DOS and outputs four files, each with the name you provide and a different extension (*.cla,
*.ful, *.lnd, *.pat). Because it runs under DOS, output file names are restricted to eight characters. Three of these
files are designed for direct database import from text while the fourth file
(*.ful) combines information on individual patches, patch classes, and the
landscape as a whole into a single, more humanly readable report.

Two separate scripts for running FRAGSTATS are available with this release of
the TNT products. One is a tool script that lets you draw a region to define
the area of the underlying raster to use for calculation of statistics. The
other script is run through the SML process and requires the landscape ras-
ter and a mask raster to define your area of interest within the landscape.
The FRAGSTATS tool script demonstrates that a tool script can run an external
program using objects from TNTmips Project Files and that FRAGSTATS can
be used with an interactively designed mask (a region).

Once you have drawn and applied your region (or selected both the landscape and mask raster), you are asked to
supply an edge distance in meters. The edge distance is the setback
distance (in meters) within each patch for the purpose of calculating
core area metrics. Next, a DOS shell opens and reports progress while
FRAGSTATS is running. When FRAGSTATS is done, the DOS shell will say
finished in the title bar. You need to close the DOS shell in order to
continue working in TNTmips’ Spatial Data Display process. The
amount of time it takes FRAGSTATS to run is determined by the num-
ber of cells selected for processing and the number of patches within
the selected area.

The information shown in the multiline DataTip (left) was selected

Running FRAGSTATS with TNTmips

Summary statistics for each patch type were imported to
a database related to the landscape raster by cell value.
A multiline DataTip that incorporates specific statistics of
interest (from the 40 in the *.cla file) was then
constructed using a string expression field.

from the table that resulted from import of the .cla file produced by
FRAGSTATS. The imported table can be related to the internal table
using cell value (Internal.Value), which corresponds to the patch
type in the FRAGSTATS output.

Script for Running FRAGSTATS on RVC Data (fragtool.sml)

MicroImages, Inc. (402)477-9554 • FAX (402)477-9559 • 206 S. 13th Street, Lincoln, Nebraska 68508-2010 USA • info@microimages.com • April 2001

Macro and Tool Scripts can be created using SML in any TNTmips process that uses a View window (Options /
Customize from the View window menu bar). These scripts are then available from an icon, which you select or
design, on the toolbar. Sample scripts have been prepared to illustrate how you might use these features, which are
available only in TNTmips 6.4 or later, to assist with specific tasks you perform on a regular basis. If possible, the full
script is printed below for your quick perusal. When a script is too long to fit on one page, key sections are repro-
duced below. The sample Tool Script illustrated can be downloaded from the SML script exchange at
www.microimages.com/sml/ftpsmllink/TNT_Products_V6.5_CD.

class XmForm form, buttonRow;
class PushButtonItem closeButton;
class MdispRegionTool tool;
class Raster targetRaster;
class LAYER rasterLayer;
string rasterName$, frag$;
class XmDrawingArea da;
class GraphicsContext gc;

func checkLayer() {
local boolean valid = false;
Get name of active layer if it is usable. If not output an error message.
if (Group.ActiveLayer.Type == “Raster”) {

rasterLayer = Group.ActiveLayer;
DispGetRasterFromLayer(targetRaster, rasterLayer);
if (targetRaster.$Info.Type == “32-bit float” or targetRaster.$Info.Type == “64-bit float”) {

rasterName$ = “Type not supported!”;
}

else {
rasterName$ = rasterLayer.Name;
valid = true;
}

}
else

rasterName$ = “Not a raster!”;
return valid;
}

proc cbRedraw() {
if (gc == 0) return;
ActivateGC(gc);

SetColorName(“gray75”);
FillRect(0, 0, da.width, da.height);
SetColorName(“black”);
DrawInterfaceText(rasterName$, 0, 12);
}

proc cbLayer() {
checkLayer();
cbRedraw();
}

proc cbToolApply(class RegionTool tool) {
if (checkLayer()) {

local region MyRgn;
local class StatusHandle status;
local class StatusContext context;
local numeric lins, cols, csize, edist, value;
string type$, tempFile$, fragout$;

status = StatusDialogCreate(form);
context = StatusContextCreate(status);
StatusSetMessage(context, “Running fragstats...”);

MyRgn = tool.Region;
MyRgn = RegionTrans(MyRgn, ViewGetTransViewToScreen(View, 1));
MyRgn = RegionTrans(MyRgn, ViewGetTransLayerToView(View, rasterLayer, 1));

lins = NumLins(targetRaster);
cols = NumCols(targetRaster);
tempFile$ = CreateTempFileName();
fragout$ = GetToken(GetOutputFileName(_context.ScriptDir, “Where would you like the results?”,

“”), “.”, 0);
csize = (LinScale(targetRaster) + ColScale(targetRaster)) / 2;
edist = PopupNum(“Enter the edge distance in meters:”);

outFile = fopen(tempFile$);

value = 32071;
for row = 0 to lins - 1 step 1 {

for column = 0 to cols - 1 step 1 {
if (PointInRegion(row, column, MyRgn)) then {

fprintf(outFile, “%d “, targetRaster[row, column]);
}

else fprintf(outFile, “%d “, -value);
}

if (row != lins - 1)
fprintf(outFile, “\n”);

}

fclose(outFile);

run(sprintf(“%s %s %s %d %d 2 %d %d %d $ $ $ $ $ y y y y y”, frag$, tempFile$, fragout$, csize,
edist, lins, cols, value), 1);

DeleteFile(Rout.$Info.Filename);
DeleteFile(tempFile$);

StatusContextDestroy(context);
StatusDialogDestroy(status);
}

else PopupMessage(rasterName$);
}

proc cbClose() {
tool.Managed = 0;
DialogClose(form);
if (setDefaultWhenClose) {

setDefaultWhenClose = false;
View.SetDefaultTool();
}

}

func OnInitialize () {
WidgetAddCallback(Group.LayerSelectedCallback, cbLayer);

form = CreateFormDialog(“Fragstat”);
form.marginHeight = 2;
form.marginWidth = 2;
WidgetAddCallback(form.Shell.PopdownCallback, cbClose);

da = CreateDrawingArea(form, 15, 400);
da.topWidget = form;
da.leftWidget = form;
da.rightWidget = form;
WidgetAddCallback(da.ExposeCallback, cbRedraw);

line = CreateHorizontalSeparator(form);
line.topWidget = da;
line.leftWidget = form;
line.rightWidget = form;
line.topOffset = 2;

closeButton = CreatePushButtonItem(“Close”, cbClose);

buttonRow = CreateButtonRow(form, closeButton);
buttonRow.topWidget = line;
buttonRow.leftWidget = form;
buttonRow.rightWidget = form;
buttonRow.bottomWidget = form;

tool = ViewCreatePolygonTool(View);
ToolAddCallback(tool.ActivateCallback, cbToolApply);

frag$ = GetInputFileName(“c:/tnt/win32/fragstats.exe”, “Please locate the fragstat executable.”, “exe”);
} # end of OnInitialize

func OnDestroy () {
tool.Managed = 0;
DestroyGC(gc);
DestroyWidget(form);
} # end of OnDestroy

func OnActivate () {
checkLayer();
tool.Managed = 1;
tool.HasPosition = 0;
DialogOpen(form);
if (gc == 0)

gc = CreateGCForDrawingArea(da);
cbRedraw();
setDefaultWhenClose = true;
} # end of OnActivate

func OnDeactivate () {
setDefaultWhenClose = false;
cbClose();
} # end of OnDeactivate

variable
declarations

checks to see
if active layer
is a raster of
valid type for
FRAGSTATS

draws text
in Fragstat
window

check new
active layer
if changed

procedure
when region
applied

creates
status bar

sets local
variables

gets region

writes to text file

applies the
region for use
in FRAGSTATS

closes output file

runs FRAGSTATS

deletes
temporary files

closes Status
window

actions when
close Fragstat
window

called first time
tool is activated,
creates windows
and asks user to
locate FRAGSTATS

executable

called when tool
is destroyed

called when tool
is activated

called when tool
is deactivated

The compar.sml script provides an example that
can be used and modified to assign colors to
cell values in an 8-bit raster in a quantitative
fashion. If your printer is color stable, you can
determine which numerically input RGB color
value produces the exact color required. This
script will then let you specify a cell value in
your input raster and assign it a precise RGB
color in the associated color palette. The script
was written for someone who wanted a fast way
to assign a specific color to each class in a clas-
sified image. Assuming your color printer
does not drift in color, this approach will en-
sure that each class is printed in a consistent
color from raster to raster. This script also il-
lustrates how user input is parsed.

When you select this tool, a Command Parser
window opens for you to enter commands. The

Sample SML Tool Script

Printing Fixed Colors

MicroImages, Inc. (402)477-9554 • FAX (402)477-9559 • 206 S. 13th Street, Lincoln, Nebraska 68508-2010 USA • info@microimages.com • April 2001

 0 1 2

 5 6 7

10 11 12

15 16 17

20 21 22

W oody Emergent Low Intensity High Int
Herbaceous Residential Residential Reside
W etlands W etlands

Herbaceous Herbaceous Herbaceous Herbace
planted/cultivated Fallow Small Grains Pasture
urban/recreational Hay
Grasses

Shrubland Orchards/ Grasslands W ater
Vineyards

Deciduous Evergreen Mixed
Forest Forest Forest

Barren Barren Barren
Bare Rock Quarries Transitional

Commands are entered
one at a time. The status
bar indicates the status of
the previous command.

Set Raster Layer Controls
window / Contrast to None.
(When Contrast is set to
Normalize the displayed colors
do not match the color palette.)

CLASS: Emergent
Herbaceous Wetlands
Color # (index): 1
Red: 100%
Green: 0 %
Blue: 0 %
Transparent: 0 %

paint commands require you to specify a color with a color number. The script looks up the color number in a specified text
file, which contains sequential color numbers (called index numbers) from 0 to 255. Each index number has red, green, and
blue color component percentages as well as a transparency value. You can create this file from any raster’s color palette by
using the t command. Edit this file or even create it from scratch using a text editor or spreadsheet program. Depending on
the command you enter, the script can copy these colors all at once to a raster’s color palette (lc command) or load them (b
command) if you want to access colors individually in order to paint specific raster cells (p and pr commands).

The best way to find the index number of a color (or a class represented by that color) is to make a standard color chart you
can refer to. A color charts makes it easy to use any number of color shades to represent unique classes. All you have to
do is refer to the chart, find the index number of the color you need, and use the compar.sml tool to paint all corresponding
raster cells. The color chart is even more important when you have a large number of features to classify and you have no

Commands with sample variables:

t (outputs color palette to text file)

lc (make a new SMLcolor palette from text file)

b (load text file colors to use to paint)

r,0,255 (cell value 0 to 255 becomes transparent)

pr,0,20,1 (paints range of cell values 0 to 20 with color # 1)

p,21,2 (paint cell value 21 with color # 2)

choice but to use similar colors for different feature classes. Even with
a few classes, subtle but noticeable changes in brightness and shade
are an attractive and effective way to convey information about one
class relative to another. There are many ways to create a color chart;
the simplest is to list all of your color numbers along with the feature
classes they correspond to. The chart to the left was created in TNTmips.

Before painting a raster, enter the b command to load the text file that
contains the index numbers and color component percentages for all
your colors. Use the p and pr commands to paint the raster. All you
need to know to use these commands is the color number correspond-
ing to the
class, which
you can get
from your
color chart,
and the corre-
sponding cell
values that you
want to paint.

Excerpts from Command Parser Tool Script (compar.sml)

Sample scripts have been prepared to illustrate how you might use the features of TNTmips’ Spatial Manipulation
Language (SML). Key sections of the script are printed below for your quick perusal. The entire script can be down-
loaded from the SML script exchange at www.microimages.com/sml/ftpsmllink/TNT_Products_V6.5_CD.

proc OutputColorMap() {
if (Group.ActiveLayer.Type == “Raster”) {

DispGetRasterFromLayer(rast,Group.ActiveLayer);
cmap = ColorMapFromRastVar(rast);
if (cmap.name == “”) {

PopupMessage(“No ColorMap was found in raster object Paint function
aborted\n Use lc command to save a csv file as a colormap in the raster
object first\n or create one yourself”);
Command.value = “”;
Status.value = “OutputColorMap aborted”;
return;

}
myfile = GetOutputTextFile(“c:/color.csv”,”Select file for output:” ,“csv”);
fprintf(myfile,“%s,%s,%s,%s,%s\n”,“Index”,“Red”,“Green”, “Blue”,

“Transparency”);
Status.value = “Outputting Colormap”;
for i = 0 to 255 {

mycolor = ColorMapGetColor(cmap,i);
fprintf(myfile,”%d,%d,%d,%d,%d\n”,i,round(mycolor.red),

round(mycolor.green),round(mycolor.blue),
round(mycolor.transp));

}
fclose(myfile);
Status.value = “Colormap outputted”;
Command.value = “”;

}
else {

Status.value = “Active Layer must be a raster w/colormap for this function”;
Command.value = “”;

}
}

proc Paint() {
if (NumberTokens(Command.value,delim) != 3) {

Status.value = “Not enough parameters for Paint function”;
return;

}
if (!hascolorarray) {

PopupMessage(“Use code b (SetColorArray function) to load a colormap
to use first”);

Status.value = “Paint function aborted”;
Command.value = “”;
return;

}
local numeric cellvalue;
local numeric colornumber;
cellvalue = StrToNum(GetToken(Command.value,delim,2));
colornumber = StrToNum(GetToken(Command.value,delim,3));
if (Group.ActiveLayer.Type != “Raster”) {

PopupMessage(“Active Layer must be a raster object for this function”);
Command.value = “”;
Status.value = “Active layer must be a raster”
return;
}

DispGetRasterFromLayer(rast,Group.ActiveLayer);
cmap = ColorMapFromRastVar(rast);
if (cmap.name == “”) {

PopupMessage(“No ColorMap was found in raster object Paint function
aborted\n Use lc command to save a csv file as a colormap in the raster
object first\n or create one yourself”);

Command.value = “”;
Status.value = “Paint function aborted aborted”;
return;
}

mycolor.red = ared[colornumber+1];
mycolor.green = agreen[colornumber+1];
mycolor.blue = ablue[colornumber+1];
mycolor.transp = atransp[colornumber+1];

ColorMapSetColor(cmap,cellvalue,mycolor);

ColorMapWriteToRastVar(rast,cmap,cmap.Name,cmap.Desc);

View.DisableRedraw = 1;
LayerDestroy(Group.ActiveLayer);
GroupQuickAddRasterVar(Group,rast);
Group.ActiveLayer.AllowDeleteLayer = 1;
View.DisableRedraw = 0;
ViewRedraw(View);

Status.value = “Cell Painted”;
Command.value = “”;

}

proc LoadColorMap() {
local string line;
myfile = GetInputTextFile(“c:/colormap.csv”,”Select ColorMap file”,”csv”);

line = fgetline$(myfile);
if ((NumberTokens(line,”,”) != 5) || (“Index” != GetToken(line, “,” ,1))) {

PopupMessage(“This does not appear to be a valid colormap csv file\n
The proper format is one row of labels then 256 \nnumeric lines of the
form red,green,blue,transp \nwhere red,green,blue,transp are in the range
0-100\nDisplay a raster with a colormap already and use the t command to
export the colormap to a file to see how the file should look”);

Status.value = “Fatal Error ColorMap load halted”
Command.value = “”;
return;

}
Status.value = “Loading Colormap”;
for i = 0 to 255 {

line = fgetline$(myfile);

if ((i > 0) && (StrToNum(GetToken(line, “,”,1)) == 0)) {
PopupMessage(“Bad Index Value Encountered while loading ColorMap file

 ColorMap load aborted”);
Status.value = “Fatal Error ColorMap load halted”
Command.value = “”;
return;
}
mycolor.red = StrToNum(GetToken(line, “,” ,2));
mycolor.green = StrToNum(GetToken(line, “,” ,3));
mycolor.blue = StrToNum(GetToken(line, “,” ,4));
mycolor.transp = StrToNum(GetToken(line, “,” ,5));
ColorMapSetColor(cmap,i,mycolor);

}
if (Group.ActiveLayer.Type != “Raster”) {

PopupMessage(“Active Layer must be a raster object for this function”);
Command.value = “”;
Status.value = “Active layer must be a raster”
return;
}

DispGetRasterFromLayer(rast,Group.ActiveLayer);
ColorMapWriteToRastVar(rast,cmap,”SMLcolor”,”

ColorMap created by SML script”);

Status.Value = “ColorMap saved as SMLcolor in raster object”;
PopupMessage(“Colormap was saved as a SMLcolor colormap under raster

object\nyou must select this colormap to see the changes\nif you were displaying
the raster with a different colormap\nThis is the only function that behaves this
way\nAll other function modify the most recently used colormap”);

Command.value = “”;
}

MicroImages, Inc. (402)477-9554 • FAX (402)477-9559 • 206 S. 13th Street, Lincoln, Nebraska 68508-2010 USA • info@microimages.com • April 2001

code to force raster to reload with new color palette is not
shown (*see identical lines of code in Paint procedure)

OutputColorMap called
when t command entered;
copies color map in Raster
to CSV file
Command Syntax: t

Opens Select File window for
you choose the output file name

Returns the color at index
‘i’ in color palette ‘cmap’

fprintf output the CSV file, example:
Index Red Green Blue Transparency
0 0 0 0 50
1 0 100 0 50
2 0 100 100 50
.
.
.
255 100 100 100 100

Paint procedure invoked when p command entered; sets
‘cellvalue’ in color palette to ‘index’ value in array
Command Syntax: p,cellvalue,index

‘hascolorarray’ is initially set to false; when b command
(SetColorArray function) is executed it is set to true

Gets Raster ‘rast’ from active layer

Returns Raster’s color palette

array variables (ared, agreen, ablue,
& atransp) hold paint values;
‘colornumber’ can be 0-255; you must
add one since the array holds colors
1-256 (SML arrays start at 1)

Sets a color palette color
ColorMapSetColor(colormap,index,color)

Writes a color palette under a raster
ColorMapWriteToRastVar(Raster,colormap,Name$,description$)

These six lines of code
force raster to reload
with edited color palette

LoadColorMap procedure invoked when lc command is
entered; creates a new color map for the Raster
Command Syntax: lc

Opens Select File window for
you choose the input file nameChecks to see if the input file is valid:

Additional checks to see if the input file is valid:

GetToken(string$,
delimeters$,tokenNumber)
gets a token, which is a
delimited portion of a string

Get next line of text
from the csv file

writes new color palette
called SMLcolor for Raster;
ColorMapWriteToRastVar(
Raster, colormap, name$,
description$)

*

global variables declared outside of these procedures
class RASTER rast;
class ColorMap cmap;
class Color mycolor;

array ablue[256];
array atransp[256];
numeric hascolorarray;

class FILE myfile;
array ared[256];
array agreen[256];

Localizing SML Scripts

MicroImages, Inc. (402)477-9554 • FAX (402)477-9559 • 206 S. 13th Street, Lincoln, Nebraska 68508-2010 USA • info@microimages.com • April 2001

SML dialogs, including Macro and Tool Scripts, should conform to
the same language as the rest of your interface. The text strings for
dialog boxes and other interface components of any SML script can
be customized to your own language.

In this example, an SML tool script dialog is changed from English
to French. The new French version of the tool can then be made
available in the sample atlas of France and have the same language
as the rest of the dialog. The Find Streets tool (street.sml) lets the
user enter a street name and then zooms in on and highlights any match-
ing streets found in a specific vector attribute table. To update the lan-
guage of all interface components, open the SML tool script in an editor and examine and change any functions that
affect text in the interface. The ToolTips for the icon buttons in the Search for a street window shown above are
specified by string parameters in two CreatePushButtonItem functions in the script. Any Create function should be
examined and their text strings replaced. Some other func-
tions with text strings to look for include: Popup functions
(like PopupString and PopupMessage), print, fprint, sprint,
SetStatusMessage, StatusSetMessage, and ViewSetMessage.

For MS Windows operating systems, to change
the character set for your computer keyboard,
open the Keyboard Properties window (Con-
trol Panel / Keyboard) and add your language.
Then switch your keyboard between character
sets by typing the specified keyboard shortcut.
(Make sure the environment you want to type
in, Windows or MI/X, has focus before typing
the shortcut to change languages.)

The titlebar of this window was changed to French by
editing the text string in a function in the tool script:

CreateFormDialog(“Search for a street”,View.Form)
CreateFormDialog(“Recherche d’une rue”,View.Form)

TTTTText strings that were changedext strings that were changedext strings that were changedext strings that were changedext strings that were changed
in the street.sml tool script include:in the street.sml tool script include:in the street.sml tool script include:in the street.sml tool script include:in the street.sml tool script include:

CreatePushButtonItem(“New search”,DoNew);
CreatePushButtonItem(“Nouvelle requête”,DoNew)

CreatePushButtonItem(“Highlight the street”,DoZoom)
CreatePushButtonItem(“Afficher la rue”,DoZoom)

CreateFormDialog(“Search for a street”, View.Form)
CreateFormDialog(“Recherche d’une rue”, View.Form)

PopupString(“Enter all or part of the name of the
 street to search for”, “”)

PopupString(“Entrez le nom ou une partie du nom
 de la rue a chercher”, “”)

PopupMessage(“No streets found containing this word!”)
PopupMessage(“Aucune rue de l’échantillon de la base

 de donnee ne contient ce mot!”)

New Search

Highlight the street

In addition to changing text strings in the script, you
should also change the ToolTip for the macro or tool
icon button in the View window. Open the Customize
Tool Scripts window (Options / Customize / Tool
Scripts), click the Properties icon and change the ToolTip.

For Macro and Tool Scripts, use the Edit
icon in the Customize Tool Scripts window
to open the Query Editor. Other SML
scripts can be edited in the Spatial Ma-
nipulation Language editor: Process / SML
/ Edit / File / Open / *.SML File.)

Choose Edit / Find or Find Again to search
the script for key words such as portions
of function names, character strings you
know exist, or even double quote char-
acter to find text strings that appear in
the user interface.

	Before Getting Started
	SML in the TNT Products
	Run VIEWSHED.SML
	Fundamentals of Scripting
	Variables and Constants
	Expressions and Statements
	Built-in Functions
	Online Function Help
	User-Defined Functions and Procedures
	Using Classes
	Member Inheritance and Type Checking
	Class Methods
	User Input
	Loops and Branches

	Script Development and Checking
	Toolbars and the SML Custom Menu
	Script Objects and Encryption
	Raster Objects
	Vector Objects
	Using the Vector Toolkit
	CAD and TIN Objects
	Region Objects
	Database Objects
	Converting Objects
	Sample Script: Extract Polygons
	Sample Script: Network Routing
	Including Scripts and Running Programs
	SML Layer in Display
	SML and GeoFormulas
	Creating Dialog Windows
	Creating a Simple Dialog Window
	Using Widgets To Build Dialog Windows
	Creating and Using a Drawing Area
	Creating a View in a Dialog Window
	Coordinate Systems in Views

	Movie Generation Scripts
	3D Simulation Scripts

	APPLIDATs
	Providing APPLIDAT Instructions
	BIOMASS2 APPLIDAT

	Tool Script and Macro Scripts
	Macro Script Setup
	Sample Macro Script: Zoom to Scale
	Sample Macro Script: Snapshot
	Tool Script Templates
	Sample Tool Script: Select Point
	Sample Tool Script: ViewMarks
	Sample Tool Script: Raster Profile
	Sample Tool Script: Area Statistics
	Sample Tool Script: Region Statistics
	Sample Tool Script: Run Browser
	Sample Tool Script: Find Streets
	Sample Tool Script: Flow Path
	Sample Tool Script: FRAGSTATS
	Sample Tool Script: Command Parser

	Index and MicroImages Product Information
	ATTACHMENTS: Release Notes Plates
	Sample Script: Extract Selected Polygons
	Sample Script: Farm to Market Routing
	Sample Script: Movie Generation Scripts
	Macro Script Setup
	Macro Script: Zoom to Map Scale
	Tool Script Templates
	Tool Script: ViewMarks
	Tool Script: Area Statistics
	Tool Script: Region Statistics
	Tool Script: Run Browser
	Tool Script: Find Streets
	Tool Script: Flow Path
	Tool Script: Run FRAGSTATS
	Tool Script: Fixed Colors (Command Parser)
	Localizing SML Scripts

