Gettlng Star F '
Yo ertlng Scrlpts
S thSML

TNTmlps®

TG & A TNTedltTM
T ATINTview®

Before Getting Started

This booklet introduces techniques for creating scriptsin the Spatial Manipula
tion Language (SML) in the TNT products. The exercisesin this booklet intro-
duce you to concepts and techniquesfor writing powerful scriptsfor custom ma-
nipulations of the spatial data objectsinyour TNT Project Files.

Prerequisite Skills Thisbooklet assumesthat you have completed the exercises
in Getting Started: Displaying Geospatial Data and Getting Sarted: Navigating.
Please consult those booklets and the TN Tmips Reference Manual for any review
of essential skillsand basic techniquesyou need. Thisbooklet also assumesthat
you have at least a fundamental knowledge of one or more programming lan-
guagessuchasC, BASIC, or Pascal. You canbegintouse SML evenif you have
no programming background, but SML is a powerful language and yields the
most benefit in the hands of a good programmer.

Sample Data The exercises in this booklet use sample data that is distributed
withthe TNT products. If you do not haveaccesstoaTNT products CD, you can
download the data from the Microlmages web site. In particular, this booklet
uses scriptsintheLiTepata / smiL datacollection, the custom, MACRSCR, and TOOLSCR
subdirectories under your primary TNT directory, and objects in the cB_DATA,
SF_DATA, SURFMODL, and EbITRAST data collections. Install the sample files to
your hard drive; you may encounter problems if you work directly with the
sample data on the CD-ROM.

More Documentation This booklet is intended only as an introduction to the
Spatial Manipulation Language. Consult the TNT reference manual, and espe-
cialy theonline SML Referencefor moreinformation.

TNTmips and TNTIite® TNTmips comesin two versions; the professional ver-
sion and the free TNTIite version. This booklet refers to both versions as
“TNTmips.” If you did not purchase the professional version (which requiresa
software license key), TNTmips operatesin TNTIlite mode, which limits object
size, and enables data sharing only with other copies of TNTlite. SML is not
availablein TNTatlas. All the exercises can be completed in TNTIite using the
sample geodata provided.

Keith Ghormley and Randall B. Smith, Ph.D., 31 October 2001
©Microlmages, Inc., 1997

It may be difficult to identify the important points in some illustrations without a
color copy of this booklet. You can print or read this booklet in color from
Microlmages’ web site. The web site is also your source for the newest Getting
Started booklets on other topics. You can download an installation guide, sample
data, and the latest version of TNTIlite:

http://www.microimages.com

page 2

Spatial Manipulation Language

SML in the TNT Products

The Spatial Manipulation Language (SML) isapro-
gramming language that lets you write scripts that
operate on thegeospatial dataobjectsin TNT Project
Files. SML scripts can be executed from custom
menus and icon bars, from an icon on your
computer's desktop, or even from the operating sys-
tem command line.

SML isacustomization and designtool. With SML,
you canuse TNT productsfor tasks beyond the pre-
defined processesfound in the standard TNT menus.
You can create simple processing scripts, or com-
plete special-purpose productsfor atargeted private
market. You can even bundle your scripts together
with selected geodata objects in a Project File and
distribute the whole package as a turn-key
APPLIDAT (APPLIcation plusDATa).

Microlmages provides scoresof sample SML scripts
to giveyou modelsto work from. You can examine
and adapt scripts ranging from simple processing
routinesto complex APPLIDATSsthat contain hun-
dredsof linesof code. Your SML
scriptswill be easy to modify and S
enhance over the life of your |
project. You can quickly
prototype and test pro-
gram features.

= THTnips 6.5 Seriall 0080

STEPS

M select Install Sample
SML Scripts from the
TNT products CD
installation menu

In later exercises, you will
access them in the /custom
subdirectories under your
TNT products directory.

The exercises on pp. 4-18
introduce basic SML
concepts and scripting
conventions. Pages 19-27
illustrate specific program
techniques for different types
of geodata objects. The
remainder of the book
introduces advanced SML
development techniques:
building dialog windows;
movie scripts; APPLIDATSs;
and Tool and Macro Scripts.

SML in TNTed

itﬂx
V3 2]

|, SML in TNTview
i 1114 51]

Display Edit Frocessl Support Toolbars Custon Help
—_—

SHL

GeoFornula. ..

SML in an APPLIDAT

=Data Logging _I[D[x]

SML scripts are completely
platform independent; they
run without modification on
any computer that runs the
TNT products.

« GeoFormulas
« CartoScripts

Surface Hodeling...

SML is available in TNTmips, TNTedit, and TNTview. In
addition, all forms of scripts in the TNT products use
constructs drawn from SML (with minor variations):

« queries and style scripts

. |
Run... 1 sMmLin
Edit Script... TNTmlps
—

* APPLIDATs
* Tool Scripts
* Macro Scripts

Refer to the Getting Started booklets Building and Using

Queries, Using CartoScripts, and Using Geospatial
Formulas for information about particular script types.

page 3

Spatial Manipulation Language

Run VIEWSHED.SML

STEPS

M select Process / SML /
Edit Script

M choose File / Open/
*.SML File and select
VIEWSHED.sML from the
LITEDATA / smL folder

M scroll through the script
for a first look at SML

M click [Run...] atthe
bottom of the window

M when prompted for the
input raster “rIN", select
ELEVATION from the cB_Tm
Project File in LiTEDATA /
CB_DATA

M for the input vector “v",
select vroap from the
VIEWSHED Project File in
LITEDATA / SML

M select a new Project File
and object for the output
raster “rout”

M use the display process
to view three layers:
CB_TM / ELEVATION, your
new output raster, and
VIEWSHED / VROADS

The viewsHeD.smL script along with its sample data
in viEwsHED.RvC is contained on the TNT products
CD-ROM, andisalso available onthe Microl mages
web site. The script creates an output binary raster
object that shows which parts of itsinput elevation
surface are visible from the stream of points along
theinput lineelements. Many applicationsthat deal
with line-of-sight surface characteristics can usethe
techniquesillustrated in this script.

Start SML and load the viewsHEDp.smL script by fol-
lowing the steps listed. Before you run the script,
scroll throughiit and survey itscontents. Unlessyou
are unfamiliar with a programming language such
asCor BASIC, you should recognize statement forms
and programming structures.

Notethat the hardest work of the script isdonewith
calls to various SML functions, such as
Rast er ToBi nar yVi ewshed(). Microlmages is
constantly adding new functions to SML. Being
aware of what functionsare available and understand-
ing what they do is essential to making the most of
SML. In addition to using the built-in
SML functions, you canwriteyour own
SML extensionsin C with TN Tsdk, and
invoke external programs from within
SML scripts (see page 28).

VIEWSHED.SML produces a binary raster (1's
shown here in yellow) that indicates the
areas visible on an elevation surface
(shown here in pseudo-color) from a
stream of points along input vector line
elements (shown here in blue). Thus if the
line elements represent roads, then the
yellow areas define the vistas available to
travelers on that road.

page 4

Spatial Manipulation Language

Fundamental

An SML script can be anything from asingle state-
ment to along structured program with nested logi-
cal branching constructsand external program calls.
Thereare few formal structural constraints.

You can use white space in almost any way. SML
doesnot careif you usetabsor spacestoindent lines,
or if you leave blank lines, or even if you break a
statement in the middle and continue it on the next
line. Thus viewsHep.svL has a function call that is
broken in the middle of the argument list and con-
tinued on the next line:
MapToObj ect (georef R, xVector, yVector,
Rin, rCol, rLine)

Inthe same way, statements can be continued across
several lines. Select New from the Filemenuto clear
the SML window. Thentypeinthe short
scriptillustrated here. Theinitia ci ear ()
statement erasesthe contents of the Con-

=Spatial Hanipulation Language HmIE]

File Edit Insert Syntax Help

s of Scripting

STEPS

M clear the SML window by
selecting New from the
File menu

M type in the script
illustrated below, using
tabs or the space bar to
indent the text

M select Syntax / Check to
check the syntax

M click [Run] to execute the
script

The SML Window is a
simple text editor that
provides access to function
lists and syntax checking.

clear(}
varl = 3
print{varl}

sole Window. Thevar1 = 3 statement
assigns the value 3 to the variable var 1.
Thefirst print() statement outputsthe
value of var1 to the Console Window.

varl

Note that the next three lines contain a
single assignment statement: var1 = s.
Thefinal print() statement islikewise

A
This silly
formatting shows
SMLU's flexibility

print

distributed across four lines. Click

[Run...] to execute the script.

Of coursethesilly formatting in this ex-
ample is provided only to illustrate the
flexible formatting SML supports. In
your own scripts, useindents, spaces, and
blank linesto enhance readability and to

reflect the logical structure of the pro-

gram. If you happento useillegal syntax or format-
ting, SML does not execute the script when you click
[Run], but posts an error message and puts the cur-
sor in the script at the point of the error.

The Console Window
shows the results of print()
and other text input / output
operations.

page 5

Spatial Manipulation Language

Variables and Constants

=EInsert Synbol]
Type: Constant .JI
deg A
e
false
ganna
infinity
null
phi
L]
#
o
|3.141592553589?931
Close | Insertl Help |
STEPS

M select File / New to clear
the SML window
M type in the first two lines
of the script in the form
clear()
print()
and leave your cursor
between the parenthe-
ses of the print()
statement
M select Insert/ Symbol,
choose pi from the list,
and click [Insert], [Close]
M typein the rest of the
script shown below and
click [Run]

=S5patial Hanipulation Language MimIE3

File Edit Insert Syntax

Variables can be used for string, numeric, logical,
array, class, and object (CAD, raster, vector, raster,
region, and TIN) entities. Variablesare created when
the script first mentionsthem. With the exception of
arrays and classes, they do not have to be declared
ahead of time. Names can be up to 100 characters
long and follow these conventions:

String: initia character islowercase; must end in
‘$’ character. In the sample script on this page,
areal abel$isastring variable.

Numeric: initial character islowercase; cannot end
in‘$. Inthe sample script on this page, r and
area arenumeric variables.

Object: initial character isuppercase
example: Get | nput Rast er (R)

Logical: implemented asnumericswhere0=false,
and all non-zero values=true. Thus
done = O;
if (condition) done = 1;
if (done) <statenent>;
Array and Class hames follow string and numeric
conventions. You must declarean array or aclass
beforeusing it. Enclose an array index in square

Help

brackets:
array nunmlist[10];
class COLOR red;
numist[1] = 256;

clear(}
print{PI}
arealabeld = “Area: "
r=5
area = PI # r™2
print{arealabel$¥, area}

You can use the Insert Symbol window (Insert /
Symbol) to insert variables used previously in
the script, or to insert predefined constants

[T—

=

Tine to exe

EConsole Hindow

3.1415926535897931
Area: 78,539816339744831

(whosevalues cannot be changed) . Usethe Type
option menu to choose a variable type (or con-
stant) and view the associated list. Inserting
variable names rather than typing them can cut
down ontyping errors. Your variable namesdo
not appear in theselists until you use the Check

Syntax operation (see page 16) or run the script.

page 6

Spatial Manipulation Language

Expressions and Statements

Expressionsare constructsthat reduceto somevaue.
Thus pi”2, 5.10, and RJi,j]/100 are all expressions.
Expressions can be used on theright side of assign-
ment statements and as argumentsin function calls.

Satementscanbesimpleor complex. A smplestate-
ment can consist of an assignment, such as

area = pi * r"2;

A complex statement is bracketed by the keywords || >

“begin” and “end” in the form
if (condition) begin
function(r);
area = pi * r"2;
end

SML also letsyou use braces (“ curly brackets’) in-
stead of spelling out “begin” and “end”:

if (condition) {
function(r);
area = pi * r”n2;

}

Conditional statements havetheform
if (<condition>) then <statenent>

el se <stat enent >;

The else clauseisoptional, asisthe “then”:
if (<condition>) <statenent>;

It is good practice (though optional) to use the ter-
) to mark the
end of astatement. Using aterminator also letsyou

minator character (the semicolon,

put multiple statements on a line,
separating them with semicolons.

The comment character (“#") tells
SML toignoretherest of theline. If
acomment character isthefirst char-
acter on a line, SML ignores the
wholeline. You can also put acom-
ment on the same line with other
SML tokens, as long as the tokens
come before the comment.

= Insert OperatomE
—

notation for

assignment, and

no>28 ™~ % 1 +

Most of the

from C or BASIC
are the same as

contains (0S€ SML uses.

and
or
[+ |
{2

Insert / Operator

list.
¥4

Logical Hot

Close IInsertI Halp

STEPS

M select File / Open/
*.SML File and select
LITEDATA / SML / EXPRESS.S
run the script

change the area
threshold for the if
condition and run the
script again

]
]

= Spatial Hanipulation Language

File Edit Insert Syntax

SML uses standard
comparison, math,
logical operations.

operators you know

Please refer to the

ML

M w3
Help

[Tine to execute ¢ Multiple statements on a

clear{}:
a = 3; print{al;

h 1

% a connent line in the niddle of a statement?
ts can go el

a
q

print{al};

= Semicolons separate v

= Console Hind line. A comment
pbselesiil character (#) tells SML to
3 ignore the rest of the line.

]

1L

L

£

N |~

L

page 7

Spatial Manipulation Language

Built-in Functions

STEPS

M clear the SML window
with File / New

M select Insert/ Function

M click the Function Group
button and browse the
function library for each
category

—_—_——————

|
CAD
Color Palette
Conzole
Database
Database Editor
Date
Drawing
File
Frane
Geodata Display
Geodata Display Group
Geodata Display Layout
Geodata Display Yiew
Georeference
GPS o
Inport Export ,——”——
Ini File
Internal
Hath
Hatrix
Hovie
Db ject
Db ject Conversion
Popup Dialog
Raster
Raster Classification
Raster Focal
Raster Global
Raster Horphological
Raster Hatershed
Region
Set
Status
String
Style
Surface Fitting
Systen
TIN
Yector
Yector Hetwork
Yector Toolkit
Hidget]

The real power of SML liesinitsrich function li-
brary that letsyou create, read, and write geospatial
objects and subobjects in your TNT Project Files.
Standard math functionsare included a ong with spe-
cialized functionsfor display, interface, and datama-
nipulation. Microlmages is constantly enhancing
and expanding the SML functionsto give you more
waysto work with your geospatial data.

Select Insert / Function to open the Insert Function
window, which letsyou select functionsand seetheir
usage format specifications. Click the Function
Group button to examinethe available functionsfor
each category. Asyou scroll throughthelist of func-
tions, the definition in the lower pane changes to
show the usage of the current function. Click the
Insert button to copy thefunctioninto the SML script
window.

The Function Group
button opens a
scrolling list of
function categories.

The Insert Function window
offers a scrolling list of functions
in the top pane, and a function
definition in the bottom pane. If
=1nsert Function you click [Insert], SML inserts

Furetion Group...||ﬁ the highlighted function at the

cursor position in the SML
GPSGetSourcelane

GPSHunSources window.
GPS0pen

GP5PortClose

GPSPortOpen

GPSPortRead{gPSPort ,lastRead) A
Read data fron a GP5 port
gP5Port @ GPSPort

lastRead : nunber <{optionall}
Pass 1 to retrieve last read values

Returns : GPSData

Create date: 13-Apr-1598
Hodify date: 18-Jun-1598
Available in SHL for Hindous: Yes

]]

0K | Cancell Help |

Close Insert Details...

page 8

Spatial Manipulation Language

Online Function Help

The supporting documentation for SML functions
is incorporated into the process. First, the bottom
pane of the Insert Function window gives asimple
definition, showing each argument and its datatype.
You can click the Insert button to copy a complete
instance of the function into the SML window.

For moreinformation, click the Detailsbuttoninthe
Insert Function window. SML opensthe DetailsOn:

STEPS

M select All in the Function
Group text box

scroll to the
GPSPortRead() function
click the Details button
click [Insert Sample]
examine the newly-
inserted script lines in the
SML script window

)

]
]
]

window that gives complete details, plus [l mEE

aworking section of codethat Showshow | Function Group... A1l

thefunction worksin asequence of state- | [epsopen A
GPSPortClose

ments. You can click the Insert Sample
button to copy the entire exampleinto the

GPSPortlpen
P5PortRead

SML window.

Since SML functions are enhanced from
timeto time, the I nsert Function window
showswhen the current

Paraneters:
gPS5Port

= Details on: GPSPortk

GPSPortRead{gP5Port, lastRead}

Read data from a GPS port

the GPS port to read fron
lastRead : nunber

class GPSPort

{optional}

function was most re-
cently changed. Watch
for modifications that
provide optional new
capabilitiestofunctions
you have used.

The Create date tells
when the function was
introduced to SML.
The Modify date tells
when the function was
last updated. Some-
times optional
arguments are added
to a function to expand
its capabilities.

Click Insert Sample to 15

copy the entire section
of sample code into the
SML window

GP5PortRead{gP5Port,]

Read data from a Gpg [Ret

Hhere:
[Function / GP5Por1
Cre
Paraneters: fod
Ava.

gP5Port @ class GP
the GPS port t

Pass 1 to retrieve last read values

urns:
class GPSData
class GPSData - see class for data

ate Datey”13-Apr-1998
ify Dately 18-Jun-1998
ilable~in or—Hindouws: Yes

1=

1 =

lastRead : numnl

retri

Close | Insert | Details...l

ptions:

port was opened witl

Returns:
class GPSData
class GPSData - see

Create Date: 13-Apr-1998
Hodify Date: 18-.Jun-1998
Available in SHL for Hindo

Exanple;

% exanple of GPSPortRe:
% declare class variab
class GPSPort gpsports
class GPSData gpsdata;
clear{}

% open the port
gpsport = GPSPortOpent

|
h GPSPortOpen ||
class for data nenbers

Click the Details
button to see a full
description of the
function's argu-

ments with an
example of its use.

ws: Yes

ad{}
les

“CON1”, “HHER™, “":d800:8:inone:l:™};

1 e

Close |

Insert Sanplel

Help |

M close th

e Details and Insert Function windows

when you have completed this exercise

page 9

Spatial Manipulation Language

User-Defined Functions and Procedures

STEPS

M select File / Open/
* SML File and open
LARGER.sML from the
LITEDATA / smL folder

M run the script

= 5patial Hanipulation Language

File Edit Insert Syntax

SML allows you to define your own functions and
proceduresthat you can use to encapsul ate sequences
of program steps that must be repeated in severa
places in the script. User-defined functions must
return avalue, whereas proceduresdo not. Of course
you must declare a function or a procedure

S petore you invokeit, using the form:

Help

larger.snl

func larger{a,b} {
if (b > a) return b
else return a3
3

clear(}
a=6;b=17;

x = larger{a,b};
llprint{"larger{a,b} is: ", x}3

=

func funcname ([parmist])

{ statenent; statenent;

return expr }

proc procnane ([parmist])
{ statenent; statement; ... }

The simple example used in this exercise
findsthelarger of two values.

)

Tine to execute

= Console Hindouw

larger{a,b) is: 7

Unlessdeclared otherwise, dl script variables
are global. This means that your functions
and procedures can use and modify variables

M select File / Open/
* SML File and open
LARGER2.sML from the
LITEDATA / smL folder
M run the script

= Spatial Hanipulation Language

File Edit Insert Syntax

defined elsewhere in the script. Any global
variables and classes used in functions and proce-
dures must be declared before the function
definitions. Inalarge or complex script, thisglobal
scope of variables may cause unanticipated conse-
quences. To limit the scope of a variable to a
particular function or procedure, you must declare
thevariableaslocal variablewithin thefunc-

M= - o
tion definition:

Help

largerZ.snl

func larger{a,b} £
local a3
a=6h
if ¢b > a} return b
else return aj
3

clear{}
a=8b=7;

= larger{a,b):

|lprint{“larger{a,b} is: ", =};

l ocal x;

where x isavariable name. Local variables
can havethe same namesasglobal variables
elsewhereinthe script, though thisisnot rec-
ommended practice. The script LARGER2
declaresalocal variable"a" within the defi-
nition of the function | ar ger (a, b) and
assignsit avalueof 6. Inthemain part of the

A

=

script, aglobal variable with the same name

Tine to execute

EConsole Hindow

larger{a,b) is: 7

isdeclared and assigned avalue of 8. Asthe
result of the script illustrates, theglobal vari-
able is ignored and the local value is used

instead by the function.

page 10

Spatial Manipulation Language

A Classisacomplex variable that consists of mul-
tiplemembersin the sameway that adatabase record
consistsof multiplefields. A classvariable may have
any number of membersand the membersmay beof |

any datatypes, including other classes.

Classvariablesare designed for passing information

to and from complex functions. In many
cases, the members of aclassvariable are set
only by afunction call, and so are read-only
from the script's point of view; they cannot
be given new values by assignment state-
ments.

A class must be declared with the class key-
word, in the form:

class COLOR background

which declaresbackground to beaclassvari-
able of the Color type. Members of aclass
are specified in the form name.member (just
as database values are specified in the form
tablefield). For example, the class Color has
fivemembersthat can beassigned valueswith
statementsin the form:

background. r ed=50

Using Classes

STEPS

M clear the SML window
with File / New

M select Insert/ Class

scroll through the list in

the top pane of the Insert

Class window and select

class Color

= Insert Class

M mE

CallbackList A1
Center i
ColorHap

ConpositeHidget

DATABASE

DBEDITOR

class Color

RGB Color structure

red : nuwber Read/Hrite
0 = 100

green : nunber
0 = 100

blue : nunber
0 = 100

transp : nunber
0 = 100

nane : string
Fron rgb,txt

Read/Hrite

Read/Hrite

Read/Hrite

I— v 15

Hrite only

Closel Help I

=S5patial Hanipulation Language

File

Edit Insert Syntax Help

background. green=75
background. bl ue=20
background. t ransp=0

Thename member of the Color classisused
only to passred, green, and blue valuesto
the class variable from the standard refer-
encefilerce.TxT. Thus

backgr ound. nane =" purpl e"

setsthe RGB components of the classvari-
able background according to the definition
of "purple” inreB.TXT . The name member
is write-only and cannot be read in other

clear(}
class color background

background.nane = “purple"

print ("Red:”, background.red}
print {"Green:", background.green}
print {"Blue:", background,blue}

% but you can"t do this:
print {("Hane:"; background.nane}
because background.namne is write-only

(=] Class names and members
[Tine o exe are case-insensitive.

=Console Hindow

Red: 62,745038039215684
Green: 12,.549019607843137
Blue: 94.117647058823536

L=

parts of the script.

page 11

Spatial Manipulation Language

Member Inheritance and Type Checking

STEPS

M select Insert / Class

M select POINT2D in the
top panel of the Insert
Class window, and
examine its members
select POINT3D in the
top panel of the Insert
Class window, and
examine its members
select XmPushButton in
the top panel of the Insert
Class window

trace the line of class
and member derivation
shown in the bottom
panel

Series of derived classes
like those shown below are
used in SML to represent
the X Window / Motif
structures used to create
interface windows. All
interface components are
catagories of a basic
component called a widget.

class ¥nPushButton

Sinple push button widget

ActivateCallback : class XnCallbackList
ArnCallback : class XnCallbacklList
DefaultButtonShadouThickness : nunber

FillOnArn ¢ nunber Read/Hrite

ShowfisDefault : nunber
HultiClick : string
Possible values:

“HULTICLICK_DISCARD™
"HULTICLICK_KEEP"

Read/Hrite
Read/Hrite

An important concept with classes is inheritance.
Class POINT2D represents the location of a 2-di-
mensiona point; itsmembersarethex andy coordi-
nates of the point. Class POINT3D is said to be
derived from class POINT2D. This means that a
classvariableyou declare as POINT3D not only has
its own member z, but also inherits members x and
y from classPOINT2D. You canuseinherited mem-
bers of aclassin the sameway you would its native
members.

Theuseof classesallowsstrong type checking. Thus,
when you invoke afunction that wantsa POINT2D
for a parameter, you can passit any POINT2D (or
derivative class). But the function will refuse any
variablethat isnot aPOINT2D. For example, you
could not pass such afunction aColor class, because
Color is not a POINT2D. By contrast, since
POINT3D isderived from POINT2D, you could pass
aPOINT3D or anything el sederived from POINT2D
to afunction that requiresa POINT2D.

The XmLabel and XmPushButton
q definitions show shared inheritance.
ead only
Read only
Read/Hriclass XnlLabel

A static text label; also base class of buttons
Alignment 3 string Read/Hrite
Possible values:
“ALIGHHENT _BEGIHNING"
“ALIGHHENT _CENTER"
“ALTGHHENT _EHD™

class ¥nPushButton is derived from class XnlLabel LabelString : string Read/Mrite
and inherits the following menbers from it HarginBotton : nunber Read/Hrite
HarginHeight : nunber Read/Hrite
Alignnent : string Read/Hrite HarginLeft : nunber Read/Hrite
Possible values: HarginRight : nunber Read/Hrite
“ALIGNHENT_BEGINNING" HarginTop : nunber Read/Hrite
"ALIGNHENT_CENTER™ HarginHidth i nunber Read/Hrite
4 2 ReconputeSize 3 number Read/Hrite
LabelString : string Read/Hrite
HarginBotton : nunber Read/Hrite class HnlLabel is derived fron class HwPrinitive
HarginHeight : nunber Read/Hrite and inherits the following nembers from it
HarginLeft : nunber Read/Hrite
HarginRight : number Read/Mrite BottonShadowPikel : nunber Read/Hrite
HarginTop : nunber Read/Hrite BottonShadouwColor : class COLOR Hrite only
HarginHidth : nunber Read/Hrite ForegroundPixel : number Read/Hrite
ReconputeSize : nunber Read/Hrite ForegroundColor : class COLOR Hrite only
HighlightPixel ; nunber Read/Hrite
. : . HighlightColor : class COLOR Hrite only
FOHOW the inheritance from Wldget to HighlightOnEnter : number Read/Mrite
XmPrimitive to XmLabel to XmPushButton. HighlightThickness : nunber Read/Mrite

page 12

Spatial Manipulation Language

Class Methods

Some classes include their own functions and pro- | STEPS
cedures, which are collectively called classmethods, | ¥ select Insert/ Class

Class methods may be used to pass values into a

M select VIEWPOINT3D in
the top panel of the Insert

class or to perform some other operation related to Class window
theclass. Classmethodsareinvoked usingtheform | & scroll the bottom panel

name.method(), where nameisthe name of the class

variable.

ClassVIEWPOINT3D representsthe settings
for 3D rendering in a 3D View window. It
includes member ViewPos, aPOINT3D class
variablethat holdsthex, y, and z coordinates
of theviewer. A class method isused to pass
the required valuesinto the class:

Class VI EWPA NT3D vp;
Cl ass PO NT3D vpos;

vpos. x = 523487;
Vpos.y = 1473245;
vpos. z = 2000;

vp. Set Vi ewer Posi ti on(vpos);

Thisclass method isaprocedure, and so does
not return avalue.

and examine the class
methods

= Insert Class 0[]

VECTORLAYERLINES A
YECTORLAYERHODES

VYECTORLAYERPOINTS

VECTORLAYERPOLYS

VYIEH

ViewsD

Hatershed !
HatershedPolygon

L

SetViewerPosition{viewerpos}
1 procedure {no return value}
Set viewer position in map coordinates |
viewerpos : class POINT3D
a walid POINT3D class

SetCenter(center}
1 procedure (no return value)
Set center of view in map coordinates
center : class POINT3D
a walid POINT3D class

= ! =

Close Help

The methodsin the STRING classareall functions | & select STRING in the top

that return either astring or anumerical value. Try

typing in and running the following example:

clear();
Cl ass STRING t xt$;
txt$ = "watershed”;

panel of the Insert Class
window

M scroll the bottom panel
and examine the class

char1$ = txt$.charAt(1);
print(char1$);

uc$ = txt$.toUppercase();
print(uc$);

ThecharAt(n) method returnsthe n'th char-
acter inthestring (indexed with theleftmost

methods
= S5patial Hanipulation Language] E3
File Edit Insert Syntax Help
clear{}: A1

Class STRING txt$s
tat$ = "watershed";

charlt = tut$.charft{l):
print{charl¥};

uc¥ = txté.tollppercasel};
print{uc$}:

=~ 1

character at 0). ThetoUppercase() method
returns acopy of the string in all uppercase
characters.

Tine to execute !

= Console Hindow

a
HATERSHED

page 13

Spatial Manipulation Language

User Input

STEPS

M clear the SML window
with File / New

type in the console
window prompt and
input statements
illustrated and [Run] the
script

choose Insert / Function
click the Function Group
button, select Popup
Dialog from the Function
Group window and click
[OK]

choose File / Open and
select LITEDATA/ smL /
popup.sML and [Run] the
script

)

NI

The simplest type of user input and output uses the
console window. You can print prompt strings and
capture user responses using the print() and input$()
functions. The consoleinput codeissimplefor the
author of the script, but console prompts may be
missed by an inattentive user.

clear(); print("Enter your nane:")
name$ = i nput $()

print("Your nanme is: ", nane$)

Popup dialog windows offer more flexibility and at
thesametimearelesslikely to confusethe user. SML
includes predefined functions in the Popup Dialog
function group that open dialogsfor input of numeric
or string values, yes-no responses, and display error

messages. Where required, the

5 ial Hanipulati L. |_[C1]] . H
=SPatie anPLdkion tansuace function parameters include a
File Edit Insert Syntax Help .
— = prompt string that you can useto
sanplt; script; Getting Started e)(plaln Wha[Val ue or respon%
clearO); should be entered by the user.

promnpt$="Pick a nunber fron 1 to 10";

val = PopupNun{pronpt$,5,1,10,0};

print {"You chose the nunber", vall:

nanet = Popup5tring{“Enter a Class

print {"You chose the nane", nanef};

You canaso build your own dia-
log windows to provide a
consistent interactive interface

Hane™,"Class_1"};

]

for your script. These windows

EConsole Hindow

You chose the nunber 5
You chose the nane Class_1

= Pronpt

Pick a nunber fron 1 to 10
Range: 1 to 10

Enter a Class Hane

caninclude push buttons, menus,
lists, and other
_Ox) components that
Function Group,.. lPDpup Dialog you are fam| I | ar
GetInputOb ject W| t h | n t he
GetDutputlb ject . .
PopupError TNTmips user in-
D terface. Samples
T —— -
PopupSelectTableField Sh 0W| ng hOW tO

Popup5tring .
created SML dia-

M=lE3

= Insert Function

Class_1

PopupTesHo
log windows are

[z

Cancel

PopupHun{pronpt$, default, nin,

(I = 3 R ——

PopupYesHoCancel
included later in

The popup dialog boxes
display a default value if you
use one in the function call.

Dpen popup window asking for a thlsbooklet
Paraneters:

pronpt$: string i
= 1 =

Close Insert |Details...

page 14

Spatial Manipulation Language

Loops

Implied L oops. When SML seesaraster object vari-
able on the left side of an assignment statement, it
executes an implied loop, evaluating the right side
of the statement and assigning the result to each cell
inthe left-side raster object:

R=R* scale # nultiplies each cell inR

For each statements for raster and vector objects
havetheforms:

for
for
for
for

each Rastvar statenent

each Rastvar[lin,col] statenent

each Rastvar in Region statenent
each vector_elenent[n] in V statenent

Intheraster (R) notation, 1 i n andcol indicatethe
line number and column number of the " current po-
sition” in the raster for accesswithin the processing
loop. Inthevector (V) notation, vector_element can
be "point”, "line", "poly", or "node". The n is op-
tional and can be omitted. If given, thevariablenis
used as the loop counter.

For statements have two forms:

for var=expr to expr statenent

for var=expr to expr step expr statenent

Loopsusing "for" statements allow a script

to operate on portions of aset of values (ras- | _Fite

=5patial Hanipulation Language

Edit Insert Syntax

and Branches

STEPS

M select File / Open and
select wHILEFOR.sML from
the LITEDATA / smL folder
run the script

change the while
condition and run the
script again

change the step value in
the for loop and run the
script again

]
]
]

NOTE: the "for each”
keyword sequence also may
be written as one word:
"foreach". This version of
SML does not support
nested "for each" com-
mands.

The break statement is used
to exit a loop before the loop
might otherwise terminate. It
is often used in a conditional
test inside the loop. The
break statement in this
example prevents divide by
zero.

M m/E3
Help

clear{};

ter cells, array values, element numbers) |3 =6:

specified by ranges, or to "step" through a
set of values.

While. Becareful of "while" loops.

for i =1 to 10 £
b = b-1;
if ¢{b==0} break; # no divide by zero
print{i,b,i/b};

A

whil e (condition) statenent -

Aslong asthe loop condition teststrue, the
loop continues. If the condition never be-
comesfalse, you get aninfinite loop.

0

[T TV

L -

(LN =
w

a = 0; I
while (a <= 360) {
print (a, sin(a/deg));
a=a+1;

Tine to erecute

EConsole Hindow

L 20000000000000001

Notice that as with all computer systems,
some operations yield very small errors in
floating point values (1 /5 yields

0.20000000000000001).

page 15

Spatial Manipulation Language

Script Development and Checking

STEPS (not for Macintosh)

)

)

keep the script from the
previous exercise open
open another instance of
the SML window with
Process / SML / Edit
Script

move the new SML
window so that it does
not obscure the first one
select the code for the
"while" loop from the
WHILEFOR SCript

use the Copy and Paste
selections on the Edit
menus to copy the
selected section to your
new script

remove the closing "}"
character from your new
script

M choose Syntax / Check

for the new script

M choose File / Exit for the

new script window and
do not save changes

=Spatial Hanipulation Language

NOTE: The MacOS does not let

File Edit
whili Copy

Insert Syntax
Ctrl+Ins

Theeasiest way to develop an SML script isto adapt
the sample scripts distributed with the TNT prod-
ucts to your own needs. You can open two SML
script editing windows side by side and usethe copy
and paste menu functions to copy sections of code
from the Microlmages sample script into the script
you aredeveloping. If you arerunning under aWin-
dows operating system, the SML cut and paste
functionsuse the Windowsclipboard, soyou can also
cut and paste text between the SML editor and an
editor running under Windows.

The Check option on the Syntax menu checks your
script for syntax errors. The types of errorsthat can
befound include missing function parameters, func-
tion and variable misspellings, and unclosed
parentheses and loops. The syntax checker cannot
detect logical errors such asinfinite loops or incor-
rect input values.

If the syntax checker finds problemsin your script,
the message line at the bottom of the SML window
displaysan error message and placesthe cur-
sor at the end of thelast part of the script that
the checker could correctly interpret. Often

Shift+Del
Shift+Ins

File Edit

Topy
Last

Paste

Insert Syntax
{ipdeing
Ghifneliad

Shift+Ins

ke the error immediately follows the cursor lo-
cation, but if the error involves nested
processing loops, you may need to search
some distance past the cursor to find the prob-
lem. You should use the syntax checker
frequently as you develop your script.
== Check each small portion asyou write it.
Itiseasier tofind and fix errorsasyou go
along rather than waiting to fix all of the

Clear

errorsinalong complex script. Checking

Insert File,..

Find

you open two instances of the

same process, S0 you cannot use
this method to copy and paste
between SML scripts on the Mac.

= Spatial Hanipulation Languagd Wntax also updaIeS
File Edit Insert Syntax the | |$S Of Varlabl e
— available for inser-
hile ¢a <= 360} §f i

s oy e tionfromthelnsert/

Symbol window.

a=a+ 10

3

page 16

Spatial Manipulation Language

Toolbars and the SML Custom Menu

You can select and run any SML script without open-
ing the SML editor window by selecting SML / Run
from the Process menu. You can also assign SML
scriptstoiconson customtoolbars. Usethe Toolbar
Editor window to create or select a toolbar, set a
horizontal or vertical orientation, and set up label
positions. Then select oneor more SML scriptsand
edit the Label and Tooltip text boxes asillustrated
to establish the interface text for each. Press the
Icon button to select an icon for each script. The
stepsinthisexercise create anew SML toolbar with
two script icon buttons.

Sample SML scripts provided by Microlmagesalso
can be run from the Custom menu cascade if you
haveinstalled them fromthe TNT productsCD. (If
your TNT menu bar does not have a Custom menu,
runthe TNT setup program from the CD and select
Install Sample SML Scripts.) The setup program
createsa/custom subdirectory and copiesthe sample
* SML scriptstoit. Thereafter, any new scriptsthat
you put into the/custom directory also becomeavail-
able on the Custom menu.

=Toolbar Editor _[Cllx]

Toolbars

General 2 Hew I

Airphoto Interpretation Delet:

GHL Toolbar [EE)
A

Hane: [SHL Toolbar
Orientation: Horizontal — | Labels: Below — I IconsT =i

Available Processes Selected Processes
fipply Contrast A Run BOXCAR2, SHL A
RAttach Attributes L C AR un YIEWSHED, SHL
Autonatic Classification Add SHL
Buffer Zones roe
CAD Extract Fl Renove | |
e Label; |YIEHSHED
1cun...|irﬁ TaolTip: [Run VIEWSHED,SHL
Conrand: [tntdisp -snl c:\THNTDATAALITEDATANSHLAYIEHSHE!

]
]
]
]
]
]
]
]

EustonI Help

APPLIDAT -
CAD -
CLASSIFY -
CONVERT -
DATABASE -
FOCAL -
GEHERAL -
GEOREF -
HATRIX -
HOYIE -
OBJECT
TIN -
VECTOR -

STEPS
M choose Toolbars / Edit in

the TNTmips main menu
press [New] in the
Toolbar Editor window
edit the Name field to
read "SML Toolbar"
select Horizontal from
the Orientation menu
click [Add SML...]
select BOXCAR2.SML

click [Icon...] and select
an icon

repeat the previous two
steps for VIEWSHED.SML
click [OK] to finish

The Custom
menu
cascade lists
the scripts in
the / custom
subdirectories
created by
the TNT
installation
process.

OBJEXT (SHL}
OB.JHAHE {SHL}
OB.JHUH ¢SHL}

Use the Toolbar Editor to
add Boxcar2 and
VIEWSHED icons to a
new SML toolbar.

=5HL ToolbarMimE]
st T
i‘f@ dRun YIEHSHED.SHL
BOXCAR2 VIEMSHED

page 17

Spatial Manipulation Language

Script Objects and Encryption

STEPS

M select File / Open / *.SML

So far you have worked with SML scriptsthat have

File and choose /LiTEDATA /
SML / BOXCAR2.SML

M select File / Save As /

RVC Object (Encrypted)

M create a new Project File

and SML object as
prompted

select an encryption
password in the
Encryption Options
window

if you are not using
TNTlite, use File / Open
to select your encrypted
script (it shows only an

encryption message)

NOTE: A license key is
required to run an encrypted
SML script object. Thus
encrypted scripts cannot be

runin TNTIlite.

been saved as independent text files with the SML
file extension. These are 1-byte text files that can
be opened with any text editor. If you do edit ascript
file with another editor, be sure to save it with the
SML extension.

An SML script also can be saved as a script object
inaProject File (use File/ Save As/ RV C Object).
Thisallowsyou to put input, output, and script ob-
jects al in the same file if you find this more
convenient. Another advantage to storing a script
in a Project File is the ability to encrypt a script
object. You may want to distribute your scriptsto
othersbut still protect your development effortsand
proprietary algorithms. An encrypted script object
can only be run by authorized TNTmips users and
cannot beviewed or edited by anyone (including the
creator; always keep an unencrypted copy of the
script for reference or further development). You
can alow an encrypted script to be run by any
TNTmips user or limit its use to computers with a
specific softwarelicense key number. You can also
chooseto require apassword for running the script.

=Spatial Hanipulation Language M mE3
= Encryption Options 101 x]
File | Edit Insert Syntax Help Require License Key
Hew A, HunCols(A} RastTypel(A}) |4 “ fing Yalid Key
Open - JI -~ Specific Key: I (1]
Save e O (e " Roquire Passuord
Save As " %.SHL File... Passuord:l********
Edir Teolbar Icon,., RVC Object... . Yerifys: I**-}****{-
Hidd Tewd Fosowroet... pep Ob ject (Encrgipted)u- oK | Cancell Help |
Run., ..
Exit
disp = DispOpen{) A
~ == =Spatial Hanipulation Language |_[C1]]
I Run... I Dannnd
File Edit Insert Syntax Help
Use the Save As / Encrypted option to create an #

encrypted copy of the script in a Project File. If
you open an encrypted script in the SML window, it
shows only an encryption message. IMPORTANT:
Always keep an unencrypted copy for editing.

A
This script is encrypted. J
]

~d |

Run, .. | otk

page 18

Spatial Manipulation Language

A full set of raster functions let your SML scripts
read, create, and analyzeraster objects. You canwrite
mathematical expressions to compute values for a
new raster object from one or more input rasters or
usevarioushigher-level SML functionsto create new
raster values.

Usethe GetOutputRaster() and CreateRaster() func-
tionsto create new raster objects. When you create
an output raster object, give some thought to your
choice of the specifics of its datatype: binary, inte-
ger, signed, unsigned, and floating point. For
example, if your script's computations can create
negative output cell values, be sureto specify asigned
datatype. Several functionsprovide accessto raster
subobjects.

The raTiOscL sample script is designed to compute
the ratio between two raster image bands (assumed
to be8-bit unsigned rasters) and rescal e theresult to
the 8-bit unsigned data range for the output raster.
Theraw ratio values could rangefrom .004 (1/ 255)

Raster Objects

STEPS

)

select File / Open and
select raTIOSCL.SML from
the LiTEDATA / smL folder

M study the script structure

NEN

and statement syntax
run the script

when prompted for a
raster for n, select
pHOTO_IR from the cB_Tm
Project File in LiTepata /
CB_DATA

select reo from the ca_tv
Project File for input
object b

M create a new raster

object for rs

M for this exercise and

those on the following
pages, use the Display
process to display the
input object(s) and the
new object created by
the script

t0 255, and separate scaling isapplied for ratiosless Jl §

than or greater than 1. Thescalefactor for theupper ¥

range is based on the maximum ratio value for the #

entireimagearea. Thisnecessitates
storing theraw ratio valuesin atem-
porary floating point raster,
computing the .

scale factor from
the maximum ra-
tio value, then
computing the
rescaled values
and writing them
tothefina output |
raster. '

e Scaled ratio raster (left) produced
: % by raTIOSCL.SML. from cB_Tm / RED
: ‘: (center) and cB_1m / PHOTO_IR (right).

Spatial Manipulation Language

Vector Objects

STEPS

M select File / Open /
*.SML File and open the
script vectcom.smL from
LITEDATA / SML

M run the script using for
input HYDrROLOGY and
ROADS from cB_DATA /
CB_DLG

CloseYector
Createlenp¥ector
CreateYector
FindClosestlabel
FindClosestLine
FindClosestHode
FindClosestPoint
FindClosestPoly
GetInputYector
GetInputYectorlList
GetDutputYector
GetYectorLinePointList
GetYectorNodelinelist
GetYectorPolyAd jacentPolylist
GetVectorPolyIslandList
GetVectorPolylinelist
HunVectorlabels
HunYectorLines
HunYectorNodes
HunYectorPoints
HunYectorPolys
OpenInputYectorlList
OpenYector

YectHerge

YectorfAND
YectorElenentInRegion
YectorExists
YectorExtract
YectorOR
YectorReplace
YectorSubtract
VectorToolkitInit
VectorX0R

Vector functions are listed in
the Vector (above), Vector
Network, and Vector Toolkit
function lists.

A growing list of functions support vector object
creation, reading, writing, and manipulation. Look
for vector function definitionsin the Vector, Vector
Network, and Vector Toolkit groups.

A simple script illustrates basic functions for input,
output, and one of the vector combinations:

Get | nput Vect or (Voper at or) ;

Get | nput Vect or (Vsour ce) ;

Get Qut put Vect or (Vor) ;

Vor = Vector OR(Voperator, Vsource);

Vector extraction operations are supported by simi-
lar functions. For an example, refer to the sample
script custom / VECTOR / VECEXTR.SML.

SML aso supports more complex interaction be-
tween vector objects and objects of other types. You
have aready seen viewsHep.svL (page 4). Another
example is provided in custom / rFocaL /
VECFOCAL.SML, Which uses points in a vector object
to select cells in a raster object and applies the
FocalMean() function to each of those cellsin turn.
Open that script and observe how the vector coordi-
nates (x=V.point[i].Internal.x) aretrand ated into map
coordinates using the georeference function
ObjectToMap(V,x,y,georefV,xVector,yVector), and
how MapToObject(georefR, xVector, yVector, R,
rCoal, rLine) findstheraster cell correspondingto the
map coordinates.

The short
script
shown

& above uses
VectorOR()
/ to combine
T

. ’\ :
RV
Q\‘H{ objects into
§\ asingle

S

output

1
RIAN S g 7s A

y

page 20

Spatial Manipulation Language

Using the Vector Toolkit

The functions in the Vector Toolkit function group
enableascript to modify elementsin an existing vec-
tor object or add new elements to an object. To
modify an existing vector object, the script must first
initialize the vector toolkit for use with that object:

Get | nput Vect or (V) ;
Vector Tool kitlnit(V);
[Editing operations with vector
tool kit functions]

Cl oseVector (V);

When you will be adding elements to a new output
vector object, toolkit initialization can be donewhen
the object is created. The second argument to the
GetOutputVector() functionisan optional flag string
that can be used to set the topology level and toini-
tialize the vector toolkit. For example, setting this
argument to "Vector Toolkit,Polygona” initidizesthe
vector toolkit and establishes polygonal topology for
the vector object.

The sample script vTooLkiT.smL shows how some of
thevector toolkit functions can be used to create el -
ementsinanew vector object. Thescript first opens
an input raster and finds its geographic
extents and the map position of the cell
withthehighest value. Thescript then cre-
ates a new vector object with implied
georeferencetotheinput raster object, adds
apoint element at the position of the maxi-
mum cell value, and draws a vector line
outlining the raster extents. Thelocation
on thisboundary linethat is closest to the
maximum cell point is then found, and a
line is added connecting these two loca
tions. Thevector object isthen validated
(to check topology and compute standard
attributes) and closed.

Raster bem16_giT and the vector object /
created from it by the sample script.

STEPS
M select File / Open /

* SML File and open the
script vrooLkiT.smL from
LITEDATA / SML

M study the script structure

and comments

run the script using for
input bem_1681T from the
cB_ELEV Project File in
LITEDATA / CB_DATA

ClosestPointOnLine
YectorAddLabel
YectorAddLine
YectorAddHode
YectorAddPoint
VectorAddTwoPointLine
YectorChangeline
YectorChangePoint
YectorDeleteDanglel ines
YectorDeletelabel
YectorDeletel abels
YectorDeleteline
VYectorDeletelines
VectorDeletelode
VectorDeleteNodes
VectorDeletePoint
YectorDeletePoints
YectorDeletePoly
YectorDeletePolys
YectorDeleteStdAttributes
YectorLineRayIntersection
YectorSetFlags
VectorSetZValue
YectorUpdateStdAttributes
YectorYalidate

page 21

Spatial Manipulation Language

CAD and TIN Objects

STEPS

M select File / Open/

*.SML File and open the

script cap.smL from

LITEDATA / SML

examine and then run

the script using raster

object HaywarDp from the

HAYWDEM Project File in

LITEDATA / SF_DATA

M open the script TiN.sML
from LITEDATA / sML

M study and then run the
script, using object
eLev_PTs from the
SURFACE Project File in
LITEDATA / surrmobL for the
input

CADAttachDBRecord
CADCreateBlock
CADElenentInRegion
CADElenent Type
CADGetElenentlist
CADInsertBlock
CADHunBlocks
CADHunElenents
CADReadArc
CADReadArcChord
CADReadArcHedge
CADReadBox
CADReadCircle
CADReadEllipse
CADReadEllipticalfrc
CADReadEllipticalfArcChord
CADReadEllipticalfircHedge
CADReadLine

CADReadPoint

CADReadPoly

CADReadText
CADUnattachDBRecord
CADHritefrc -
CADHritefircChord
CADHritefArcHedge
CADHriteBox
CADHriteCircle
CADHriteEllip=se
CADMriteEllipticalfAre
CADHriteEllipticalArcCh
CADHriteEllipticalArcHe:
CADHritel ine
CADHritePoint
CADHritePoly
CADHriteText

CloseCAD

CreateCAD

GetInputCAD
GetDutputCAD

OpenCAD

A growing list of functions support CAD and TIN
object creation, reading, writing, and manipul ation.
Sample script cap.smL uses some of the numerous
CAD functions. The script uses a raster object as
i nput to define geographic extentsand georeferencing
and creates a new georeferenced CAD object to
which several elementsareadded. A circleelement
isdrawn centered at the geographic center of theras-
ter, then aline element is drawn from the center to
thecircumference of thecircle. Several box elements
are then added around the center point.

1 i CloseTIN
Samplescript Tin.sme illus- ety
trates some of the TIN EetOutputTIH
. TINAddHode
functions. It uses the TiKCreateFroniodes
TIHDeleteEdgeAndHakeHol
TINCreateFromNodes() Tiweletehode

TIHDeleteNodeAndHakeHole

function to make a new
TIN object from arrays of
node coordinates. Theco-
ordinate arraysare created
in this case by reading the
coordinates of pointsin a
3D vector object. The
script also uses functions

TIHDeleteTriangleAndrakeHole
TIHDeleteTrianglesInFolygon
TIHElenentInRegion
TINGetConnectedEdgel ist
TIHGetConnectedHodel ist
TIHGetEdgeExtents
TINGetEdgeHodesAndTriangles
TINGetNodeExtents
TINGetHodeZYalue
TIHGetSurroundTrianglelist
TIHGetTriangleExtents
TIHGetTriangleHodesAndEdges
TIHGetTrianglesInPolygon

TIHHunberEd:
to read the number of TIN TiNubertulle
H TIHNHunberHod;
hulls, edges, and triangl€s. jruumberTriangtes
TIHSetHodeZYalue

page 22

Spatial Manipulation Language

Region Objects

You can also create and use region objectsin SML
scripts. Region objects represent the outline of a
region of interest in operations on other spatial ob-
jects. SML functionsin the Region function group
allow you to open and save region objects, check if
particular map coordinatesliewithin theregion, and
perform region combination operations (AND, OR,
Subtract, and XOR). Severa functionsin the Ob-
ject Conversion group allow you to convert vector
and binary raster objectsinto region objects.

SML providesasimpleway to usearegion object to
restrict actions on araster object. The simple con-
struction

for each RastVar in RegionVar {
[actions]

}

restrictsthe actionsto raster cellsthat liewithin the
region boundaries. Thisconstruction providesasim-
pler aternativeto using vauesin abinary mask raster
to control the operations.

The sample script Reclon.suL illustratesthe
use of some of the region functions. The
script openstwo region objects and usesthe
RegionAND() function to find the region

STEPS

M select File / Open /
* SML File and open the
script REGION.sML from
LITEDATA / SML

M study the script structure
and comments
run the script using for
input the region objects
POLYREGION and RECTANGLE
from the recion Project
File in LiTEDATA / smML and
vector object ELEV_PTs
from the surrace Project
File in LITEDATA / SURFMODL.

ClearRegion
CopyRegion
CreateRegion
GetInputRegion
GetOutputRegion
OpenRegion
PointInRegion
RegionAHD
RegionOR
RegionSubtract
RegionTrans
RegionX0OR
SaveRegion

that istheir intersection. This new region
isthen used to find information about point
elements in the corresponding area of an
input 3D vector object. The script usesthe
PointinRegion() function in a "for each"
loop to examine each point's coordinates
and select only those pointsthat lie within
theregion.

EConsole Hindow

Hunber of points in region interszect = 81

Haximum point elevation in region intersect = 2478
Hap s-coordinate of maxinun elevation point = 522806,6166251945
Hap y-coordinate of maxinun elevation point = 1425041,0612069929

page 23

Spatial Manipulation Language

Database Objects

STEPS _ Sample script bAtaBase.sML shows how to read at-
& open the sample script | iy te values from a database. The syntax is an
DATABASE.sML from the . .

LrepaTa / swi folder exten_SI on of the TABLENAME.FI ELDNAME constructll on
M run the script using used in queries. Inan SML script, thedatabasefield
object nsois from the reference must also specify the object, the database
HavwsolL Project File in | g hohject (aseparate database s maintained for each
the LITEDATA / SF_DATA . .
folder for input type of element in avecth or T! N obj ect_), and Fhe
M open the sample script element number. If the field being read is a string
pe2.smL from the utepata [field, you must also append the"$" character to the
/'sw. folder end of thefield reference:
M run the script using
object ce_soiLsuiTe from string$ = Vect.poly[4].table.fields.

the ce_soliLs Project File)]
in the ca_pata folder for Functionsto create and modify databases are found

input inthe Database function group. Thisgroupincludes
IEfabeee e e functionsto create new tables, to add or insert fields
e i opaone in tables, to write new records in atable, and to at-
ieldGetInfoByHunber A A X
HunRecords tachrecordsto elementsinthespatia object. Sample
Penl atabase . . .
OpenDatabase script pe2.smL provides examples of these operations.
OpenRasterDatab. . . .
OpenTINDatabace It creates a new vector object with points located at
e et e o onace the centroids of polygonsin theinput vector object,
LRIl Eel U LSt SRS createsapoint database and table, and copies sel ected
TableRiddField attributesfrom each polygon to the associated point
TableAddFieldFloat
TableAddFieldInteger element.
TableAddFieldString 2 Mt i
TableCopyToDBASE L} s:nslgsz::izpt: Getting Started
TableCreate
TableExrists ;npupﬂassaga("ﬁelect /litedata/sf_data/HAYWSOIL /hsoils"}s
TableGetInfo GetInputVector{V};
TabloTeom i FioldFloat | nunpolys = Hun¥ectorPolys(¥): DATABASE.SML refers to the
TableInsertFieldInteger o i = 1 tq Acres field of the soiLtyre

table and the soiLnaME
field of the wiLpLiFe table.

TableInsertFieldString
TablekeyFieldl ookup
Tablel inkDBASE <§§pe$ = \f.pulg[i].llildlifs.SuilNaneE; >

TableNeuRecord
TableDpen 3

TableReadfAttachnent

printf{"Polygon # %d: Soil type = Xs, acres AZdwn",i,typel,acres);

TableReadF ieldHun =hsoils 7 PoluData / SoilType

TableReadFieldStr

TableHritefittachnent gials

TableHriteRecord 1y

Style| HapSunhnl\SoiLNane Acres Yercent

107|Elear‘ Lake clay, 0 to 2 percent slopes I 8140,0 ‘ 5,64
108[Clear Lake clay, 2 to 9 percent slopes, draind 1710.0/| 1.2|
109|Elinara clay, 30 to 50 percent slopes \ 370.0, 0,3

llllﬂanville silty clay loan, 0 to 2 percent sluﬁlﬂﬁsﬂ.g 7.4
N—

=Console Hindow

Table Edit Record Field

Polygon # 99: Soil type = Xerorthents, acres = 3135 |

FIE -
W Sl bl = Polygon # 100: Soil type = Botella, acres = 4625

Style |HapSynby#Soillane Grain_Seed Polygon # 101: Soil tupe = Los Osos, acres = 305
@ | 7 Cloar Lake \Fair Polygon # 102: Soil tupe = Gaviota, acres = 215

Polygon # 103t Soil tupe = Los Osos, acres = 1675

@_ {08[Clcar Lake |Good Polygon # 104: Soil type = Gaviota, acres = 215 5
I A3 CLinara Foor
@ TNpanville / [Good - =

page 24

Spatial Manipulation Language

Converting Objects

Onecommon rationalefor creating an SML scriptis | STEPS)
the desire to automate a multi-step processing se- | ¥ ©open the sample script
SOILTEST.SML from LITEDATA

quence that needsto be performed repetitively on a /s
number of different input datasets. The ability to | @ study the script, then run

convert geospatial data from one type to another it using objects in the
within SML givesyou great flexibility in designing souTest /Psr:;ﬁgtr iFr:';u't”
such ascript. The standard TNTmips data conver- Use object savppTs for
sion processes lead the industry in support for data the "Points" and object
types and functionality. Many of these conversion BounbaRy for "Boundary”
processes are available as functions in SML in the | ¥ 2;0;]? ;Tﬁe‘:egsr”;m’jé‘gs
iject Conversion f_unct!on group. Othq special- requested by popup
ized conversion functionsinthe Surface Fitting group dialog windows
interpolate araster surface from avector or TIN in- BinaryRasterToRegion
. ConvertCHYKtoRGB
put object. ConvertHBStoRGE
i ConvertHIStoRGE
The soiLTEST.sML sample script automates the pro- Ez::;:::::;zﬁ?:\fect
cessing of soil sample dataand uses several types of ConvertRGBLoHBS
. . . . ConvertRGBtoHIS
object conversion functions. The script reads a se- Conver tRGBLoHSY
riesof soil chemistry values stored in adatabasetable o e torpul TR
attached to input vector point €l ements representing R e otB
sample locations. For each type of value (soil pH, RasterRGBToConposite
. . RasterToCADBound
organic matter content, and others) the script usesa RasterToCADLine
surfacefitting function to create asurfaceraster. In | pecrortovestor bound
intermediiate steps the script uses a vector polygon pastor To¥eokortentour
representing thefield boundary to createablank ras- ULdEeer
TINToYectorContour

ter to useasamask for each surface. It also createsa VectorElenentToRaster

YectorToBufferZone

region from the
polygon and uses
the region to
writethevalue
1 into every
cell in the
mask raster
that lies in-

side the field _ .
bound Soil test Field
ary. sample boundary
points polygon

Computed soil
organic matter
surface raster

Computed soil pH
surface raster

page 25

Spatial Manipulation Language

Sample Script: Extract Polygons

STEPS _ The sampl e script TIGER.sML provides an example of
i choose File / Open / vector and database processing in SML. It extracts

* SML File and select
from your main TNT

specified linesfrom input vector objects, writesthem

directory custom / vector | 1NtO an output vector object, and transfersinput line
I TIGER.SML attributes to output polygon attributes.

M study the script structure

and comments TIGER.sML Was designed to process vector objects

R s S v
RALIESD Vi
Li LR BT -ay%/}—
| i
L 1T 5
. irgGar : K ﬁﬁ
Lk R “E
ﬁiu 5 =
E SEEES

ot

T M

T e R

et]

ZW el il

T

PN RIRGLEN

e e T

SRR i R

L [3] -
e e BT

TIGER vector for a single
county with lines styled based
on their attributes.

Raymond
Malalt Welverly

Penton

Befinet

Rogs

Spragus Hickfhan
Far

Extracted city polygons for
the same county, with labels.

i mported from TIGER linefiles (2000 version) pro-

duced by the United States Census Bureau.
TIGER geodataisorganized by county, and inte-
grates line geodata of many types (hydrology,
roads, administrative and census boundary lines)
into one vector datalayer. Topological polygons
result from the intersection of these various line
types, but individual polygons have little geo-
graphic meaning. Areaattributesare coded only
as attributes of the left and right sides of lines.
Thischaracteristic of TIGER datamakesit diffi-
cultto accessand display areal information using
theraw vector objects.

Areaboundary linesinthe TIGER vector, suchas
city and town boundaries, can beidentified by the
inequality of particular attribute values on either
side of theline. This script finds city boundary
linesin one or moreinput TIGER vector objects
and writes each line to a new output vector ob-
ject. When all line elementsfor a particular city
boundary have been transferred, they intersect to
form a polygon in the output vector. If the cur-
rent line completesanew polygon, the city name
is read from the input line database, and a new
polygon database record containing the nameis
created for the output vector. Thisscript hasbeen
used at Microlmages to process al of the 93
county TIGER vector objectsfor the state of Ne-
braskato produce asingle statewide city polygon
object.

More about the extract polygon script is available in an online document at

http://www.microimages.com/relnotes/v65/smitiger.pdf

page 26

Spatial Manipulation Language

Sample Script: Network Routing

The sampl e script NETWORK.sML showsamorecom- | STEPS

icati ossi M choose File / Open /
plex application of vector and database processing ~ SML. File and select

in SML. Ituses networ_k _anal ysi_s functions to _ad- from your main TNT
dress the problem of efficient delivery of materials directory custom / VECTOR
from numerous dispersed locations (such as farms) / NETWORK.SML

M study the script structure
and comments

to asmall number of destinations (such as process-
ing plants). The objective is to |
determine the shortest network dis-
tance from each farm to each of the
processing plants, so each farm can
transport goodsto the nearest plant.
A script is required to solve this
problem because the farm and
plant locations are represented -
aspointsin vector objects sepa-
rate from the object containing
theroad network.

For each farm and processing
plant, the script adds anode to
the roads object at the closest
point on the closest line. It
keeps track of the element
numbers of these two sets of
added nodesinapair of arrays

so that network distancescan
be associated with thecorrect
farm and plant. Network
analysis functions are then
used to compute the required set of distances, which S:t\”ﬂ‘lg'ri rse;:“i frg?ﬂﬂ‘e
arestored_ln anew databasetablefor thev_ector poi nfcs locations (cifcies) have been
representing farms. For each farm point, there is | styled in the same color as
one attached record for each processing plant, show- | the processing plant location

ing the minimum network distance. (squares) that is closest to it
along the road network.

More about the network script is available in an online document at

http://www.microimages.com/relnotes/v65/sminz.pdf

page 27

Spatial Manipulation Language

Including Scripts and Running Programs

STEPS

M clear the SML window
with File / New

M select Insert / Operator

M scroll to the bottom of
the list in the Insert
Operator window to see
the SML preprocessor
directives

The SML preprocessor
directives can be inserted
using the Insert Operator
window:

$i f def

$i f ndef

$el se

$endi f

$def i ne

$i ncl ude

When you use the run()
function as shown to the left,
SML waits until you close the
external program before it
goes on to the next
statement in the script. If you
set the run() function's
optional "wait" argument
value to 0, the external
program runs in the
background.

To find out the name of a
TNT process module (such
as “convobjs cadtovec” in
the example to the left), use
any text editor to open the
TNTMIPS.MNU file (which is in
your TNT directory).

The SML processincludes a set of preprocessor di-
rectivesthat areinterpreted beforeall of theregular
script statements. Preprocessor directivesallow you
to call up other scriptsand to set up alternative script
modes.

You can have ascript read and execute another SML
script by using the $include directive:

$i ncl ude "another.snm"

Theincluded script should be in the same directory
or Project Fileasthe parent script. If you have sev-
eral scripts that need to use the same user-defined
function, thefunction definition can bein aseparate
script that you "$include" in the other scripts.

Whileyou are devel oping acomplex script you might
want to have a"norma" mode of execution and a
"debug" modethat printsrelevant information to the
console to help you identify possible points of fail-
ure. You can set up the debugging mode using the
directive

$defi ne DEBUG

and bracket all of your setsof debug statementswith
thefollowing pair of directives:

$i f def DEBUG
[series of print statenents]

$endi f

To runthescript in the normal mode you would sim-
ply comment out the single $define statement,
leaving your debugging codein placefor later use.

If your script requires manipul ations and conversions
that are not supported in SML, you can usethe run()
system function to call TNT processes or external
programs. For example, the current version of SML
doesnot include afunction to convert aCAD object
to avector object, so you might chooseto haveyour
script run Prepare/ Convert / CAD to Vector:
run ("c:/tnt/w n32/ convobj s cadtovec").

page 28

Spatial Manipulation Language

SML Layer in Display

=EGroup 1 = Group Controls

Group Layer Options

02]] 0 o 5

o e B [% ¢

The Add SML icon button

The standard display process (Display / Spatial Data)
supportsthe use of an SML script asalayer, just as
araster, vector, CAD, or TIN object can be alayer.
An SML script layer can use flexible cartographic
drawing functionsto create special map symbolsand
neatlines.

The sampl e script ARRow.sML isdesigned to draw an
oriented magnetic declination map symbol in alay-
out. The SML layer should be alonein agroup. It
determines the true north direction from the previ-
ous map group in the layout.

Sample script

neatline.sml draws a neatline around a group, and
= Group 1 - Growp Vies 1 |nCI UdeS addl =
Wiew Tool LegendView GPE Options : Help I tl Onal draWﬂ
8lwiE| 9l2iglae oy P:EHMH:IE!LEJ1 items that you
can turn on by
MN removing the
.k ARROW.SML draws comment
| an oriented map character (#)
/ 79 symbol that from the rel-
ll,l' -4 shows true north evant script
and magnetic
| north directions. Statements.
/
| i

=SHL Layer Cantrols

i 53 s 25 1]

[Tine to drow: 1 Second

170.00 «I’_
I

)

]
]

)

Object Seript |Ennrdinates |

File Edit Inspft Syntax

M examine the

STEPS

run Display / Spatial
Data and open a New
2D Group o
click Add SML @'
select the Script tab in
the SML Layer Controls
window and choose File
/ Open / *.SML

M select LitepaTa / smL /

ARROW.SML

M in the Coordinates panel,

use the Projection button
to change the coordinate
system to Universal
Transverse Mercator

M click [OK] to close the

Layer Controls window
display, then X
remove the SML layer
add object _8_BiT

from the cs_cowmp ﬁ
Project File in LITEDATA /
CB_DATA

click Add SML and .,
select LITEDATA / sML @I
/ NEATLINE.SML

in the Coordinates panel,
set the coordinate
system to United States
State Plane 1927 and
the Zone to Nebraska
North

click [OK] to close the
Layer Controls window

Help

4 3
Fill in pgfameters here...
fngles ag€ in degrees fron vertical. Positive is to 1
. . # the left, negative is to the right
The Script tabbed panel in the SML P) : N £ .
. . nn_angle = -7.25 egrees to nagnetic nortl
Layer Controls window contains the € ¥
interface for editing and running SCI’iptS. /Get the angle to grid north from the actual group
% This code may have to be tueaked for another layout,
% Tt assumes that the group you want is the one just
before the group with this script (in drawing order).
) / class Group groups
The Coordinates panel lets you relate group = Thislayer eroup.Frevéroup;]
1 I} =

the script layer to the map coordinates

of the other layers in the display.

o |

Cancel

Help

page 29

Spatial Manipulation Language

SML and GeoFormulas

A separate Getting Started
booklet is dedicated to the
topic of GeoFormulas. See
Getting Started: Using
Geospatial Formulas.

Data
v %
Add Geoformula
M for input, select three TM
SPOT_PAN image in the

STEPS
M choose Display / Spatial
click Add
Geoformula / Quick-
M select LITEDATA / GEOFRMLA /
BROV_UMN.GSF
bands from the cs_tm
Project File and the
ce_spoT Project File, both
in LITEDATA / CB_DATA

LITEDATA / GEOFRMLA /
BROV_UMN.GSF illustrates the
dynamic enhancement of
low-resolution TM imagery
with a high-resolution SPOT
image.

=6roup 1 - Group Vieu 1

Yiew Tool LegendYiew GPS Options

A GeoFormulalayer isacomputed display layer that
uses one or more input objectsto derive aresult for
display. It givesyouaway to apply SML manipula
tions to objects “on the fly” rather than running
separate processesto prepare output objectsfor dis-
play. A GeoFormulalayer containsa"virtual object";
it does not create an output object that issaved ina
Project File. Instead, it creates adisplay layer that
releases all its system resources (such as disk space
and memory) when you are finished withit.

For example, red and infrared bands of raster imag-
ery can be combined to produce a Transformed
Vegetation Index (TVI). Of course TNTmipsoffers
asimple process that produces a TVI output raster
object from selected input objectsif you want to re-
tain the TVI output for other uses. But if you just
want to view the TV result and do not care to keep
the output object, you should use aGeoFormuladis-
play layer.

A GeoFormulascript can be saved asareusabl efile.
A GeoFormulalayer can be combined with any num-
ber of other layers in the TNT display process to
create acomplex visualization of
multiple geospatial objects.

_ (O[]
Help

| 3.

@[T «2f 92 2|@2 QSRS [a S b &5 % 0]
4 =, &

The GeoFormulafeatureisprima
rily provided for dynamic
visualization tasks in the display
process. You can also run asepa
rate GeoFormula process
(Interpret / Raster / Combine /
GeoFormula) to create permanent
output objects for other uses.

Db jects | Yalues Script |Uutput |Preuieu

_ |zun=TH5_Yalue+TH4_Yalue+TH2_VYalue
. |Dutput_Red=TH5_Yalue/sun*5P0T_Yalue=3

Output_Green=TH4_Y¥alue/sun=5POT_Yalue=3

viewr| 1.0 Scale:|

s0a56 <[[+] 4

16017663 *’l Dutput_Blue=TH2_Yalue/sun=SPOT_Valuex3

Tine to drau: 1 Second

page 30

Spatial Manipulation Language

Creating a Simple Dialog Window

For complex scriptsthat include multiple operations
requiring user input, consider creating acustom dia-
log window to control user interactionwiththescript. | &
The SML functions in the Widget function group
provide accessto the Motif widget set, whichisused
to create all of the windowsin the X Windows ver-

sions of the TNT products.

A dialog window con-
sists of aparent widget
that contains other com-

=Hello Horld

Sanple Dialog
Close

STEPS

M select Process / SML /

Edit Script

choose File / Open /

*.SML File and select

plaLoGgl.smL from the

LITEDATA / smL folder

run the script

study the script sections

that define the different

parts of the Hello World

dialog window

| M press [Close] on the
Hello World window

KA

MmlE]

Hindow

ponent widgets. Each

widget typeisaseparateclassin X andin
SML. Samplescript biaLocl.svL creates
and opens a very simple dialog window
that displaysalabel stringand hasaClose
button. Each of these componentsis a
separatewidget containedinan XmForm
widget. An XmForm widget lets you
place its "children" (contained widgets)
using a simple relative positioning
scheme. Eachwidget can be attached to
another widget onitstop, bottom, left, and
right, and you can specify an offset value
(in screen pixels) for each side as well.
In this example the label widget (class
XmLabel) is attached to the form on its
top, left, and right sides. The Close But-
ton (class XmPushButton) is attached at
itstop to the label widget and on the left
andright sidestotheform. Theformwid-

get automatically resizes to
accomodate all of the contained wid-
gets.

You can create ascrolled window us-
ing the XmScrolledWindow container
widget in place of XmForm or orga-
nize child widgetsintoagrid using an
XmRowColumn container widget.

DIALDGL,.SHL
Sample script for Getting Started.
Creates and opens a sinple dialog window,

Define parent widget for dialog window.
class XnForn winls

4 Procedure for closing window
proc OnClose(} I
DialogClose{uinl);
DestroyHidget{winl};

#4 Set up dialog windom

winl = CreateFornDialog{“Hello Horld“};
winl,Harginfeight = 53

winl,HarginHidth = 53

Create label tent for window

class XnLabel winlLabel;

winLabel = Createlabel{winl,"Sanple Dialog Hindow™"):
winLabel.TopHidget = winl;

winLabel.LeftHidget = winl;

winlLabel ,left0ffset = 10;

winlLabel ,RightHidget = winl;

winlLabel .Right0ffset = 103

Create Close button attached to label on

4 on top and to window margin on left and right

class ¥nPushButton closeButtons

closeb = Createf winl,"Close"};
closeButton, TopHidget = winlabel:

closeButton,TopOffset = 5;

closeButton, leftHidget = winlj

closeButton,rightHidget = winl;
closeButton.bottonHidget = winls
HidgetAddCallback{closeButton.ActivateCallback,OnClose};

4 Open dialog window and keep script active]
until vindou is closed,

DialogOpen(uini}:

DialogHaitForClose{uinl}s

Widget hierarchy in Hello World window

winl
Class: XmForm

winLabel closeButton
Class: XmLabel Class: XmPushButton

page 31

Spatial Manipulation Language

Using Widgets To Build Dialog Windows

STEPS

M choose File / Open/

*.SML File and select

pIALOG2.sML from the

LITEDATA / smL folder

run the script

in the dialog window

opened by the script,

enter a value in the Enter

Area Value field

M choose an input area unit
from the upper unit menu

M choose an output area

unit from the lower unit

menu

Press the Convert button

study the script sections

that define the different

window components and

actions

M click [Close] when you
are finished working with
the dialog window

RN

NI

NOTE: Script bIALOG2.SML
was written to use a wide
variety of widget types, not to
provide an example of good
window design or efficient
processing. A more efficient
design would omit the
Convert button and
recalculate the output value
when any of the user settings
changed.

Therole of the Close button in the piaLocl script is
defined by registering a callback with the widget
using the WidgetAddCallback() function. A callback
serves as apointer to afunction or procedurethat a
widget callsin response to one or more events. An
XmPushButton hasan ActivateCallback classmem-
ber availableto register the callback to be activated
when the buttonispushed. Inthisexample, activat-
ing the Close button calls the OnClose procedure
defined at the beginning of the script.

Sample script biALoG2.sML creates a more complex
dialog window that usesavariety of additional wid-
get types, including a field for entering a numeric
value, a frame, a separator line, and two option
menus. The buttons at the bottom of the window
use a different widget class than the button in the
previous script. They are instances of class
PushButtonltem, which can be used for either text
buttons or icon buttons. Text buttons must be placed
inabutton row, aspecific type of XmForm, andicon
buttons must be placed in an XmRowColumn wid-
get. You don't need to usethe WidgetAddCallback()
function to define the action of a PushButtonltem;
the function that definestheitem requiresthe name
of the callback function or procedure as one of its
arguments. The unit option menu widget also uses
thelatter method to define the procedure called when
the unit is changed.

Widget classes used to create the Area Unit Conversion dialog window

PromptNum
(includes

=lfArea Unit Conversion

label)

Enter area ualue:l 84305867 .00 square feet ;‘- — XmOptionMenu

XmFrame —" | | felect output units: omare kilamotors T

with child Hr93 in selected units: 7.83 square kilonetsr‘s /XmSeparator
XmForm / Cnnver‘tl / Close I \
XmLabel / PushButtonltem in XmLabel
XmForm

XmForm button row

(dialog window)

page 32

Spatial Manipulation Language

Creating and Using a Drawing Area

In some instances you may want to design adialog
window that incorporatesagraph created from your
input data or from the process output, or some other
graphic. Numerous functionsin the Drawing func-
tion group allow you to draw lines, geometric shapes,
and text, and to set color and other style characteris-
tics. To utilize these functionsyou must include an
XmDrawingAreawidget in your dial og window.

ThebiaLoc3.smL script illustrates how to set up and
use adrawing areain adialog window. When you
create the drawing area, you specify its height and
width in screen pixels along with the parent widget
and attachment settings. Placement of elementsin
thedrawing areaisreferencedtoan X-Y coordinate
system with unitsof screen pixelsand an origin (0,0
position) at the upper |eft corner of the drawing area.
When you use functions such as SetColor(),
SetLineWidth(), and Draw TextSetFont(), these set-
tingsare used by subsequent drawing functionsuntil
you call therelevant " Set" function again to change
the setting. These settings are stored in a structure
called a graphics context, which is created by the
function CreateGCForDrawingArea(). TheGC must
also be activated by the ActivateGC() function be-
foreit can be used.

If your dialog window is covered by another win-
dow and then exposed again, regular Xm widgets
areredrawn automaticaly. If youuseadrawing area,
however, your script must explicitly handle this
event. You must add an ExposeCallback to thecall-
back list of your drawing areawidget. Thiscallback
is triggered automatically when the window is
opened or otherwise exposed. All of the drawing
instructions must be placed inside the callback pro-
cedure so that drawing is triggered by any expose
event. A graphics context requires an active win-
dow, so the GC must also be created and activated
within the callback.

STEPS

M choose File / Open /
*SML File and select
pIALoG3.smL from the
LITEDATA / smL folder

run the script

study the script sections
that define the different
window components and
actions

click [Close] when you
are finished working with
the dialog window

HE

Filled
rectangle
[FillRect()]

Filled circle
[FillCircle()]

=Dialog with Drawing Area EWE

Drawing Area
H—
/

Circle [DrawCircle()]

Text (rotated)
[DrawTextSimple()]

The piAL0G3.sML script uses a
drawing area widget to draw
(in order) a filled white
rectangle, a filled red circle,
a yellow circle, and a simple
text string. The script for the
Raster Profile Tool Script,
described on a later page,
includes a more complex
example of the use of a
drawing area.

page 33

Spatial Manipulation Language

Creating a View in a Dialog Window

STEPS

M select File / Open/

* SML File and open
LITEDATA / SML / VIEW.SML
run the script using as
input raster _8_giT from
the ce_cowmp Project File
in LITEDATA / CB_DATA
select View / Close to
close the window

)

=ISanple Yiew Hindow M=E

VYiew LegendYiew GPS Options Help

A dialog window created by an SML script can dis-
play input or output objects in a view. The
GroupCreateView() function is used to create the
view widget to display a geodata group within the
parent dialog. Other functionsin the Geodata Dis-
play, Geodata Display Group, Geodata Display
Layout, and Geodata Display View function groups
alow you to set up a group to display, to add ob-
jects, and to access coordinate and scal einformation.

Sample script view.svL shows the basic steps re-

@w|E = P2 R|ecla/e
By i % (

=]

quired to open a view window of a group and
display aninput raster. Sample script Boxcar2.smL
creates a more complex dialog window incorpo-
rating anumber of other widgetsin additionto the
Vla,v' =Boncar Classification

Yiew LegendView GPS Options

Flwim| -2 328|820/

Sample script
BOXCARZ2.SML
provides a
more complex
example of a
dialog window

Tine to draw: <1 Second |

incorporating a

M select File / Open/

* SML File and open
LITEDATA / sML /
BOXCARZ2.SML

run the script, selecting
for input rasters Rreb,
GREEN, and sLue from the
ce_TM Project File in
LITEDATA / CB_DATA

press [Process] on the
Boxcar Classification
window to run using the
default values

study the script to see
how the various window
components are
constructed and how
actions are controlled

view.

By default, a //n

view widget .

includes the 2]
Hin, Red: 20 Hin, Green: 22 Hin, Blue: 65

standard . Hax. Red: 164 Hax. Green: 117 Hax. Bluez 221

menus, basic Red Louz | 51 Green Low: | 36 Blue Low:z | 91

toolbar, scale Red Hight | 71 Green High: | 56 Blue High: | 111

/ position line,
and status
line. A createflag$ parameter of the GroupCreateView()
function allows you to eliminate selected window
elements if you wish. For example, the Boxcar view
does not have a Scale / Position line or status line.

Pr-m:essl Clear | Save | Close |

page 34

Spatial Manipulation Language

Coordinate Systems in Views

STEPS

Previous exercises have discussed SML functions
that use an object's georeference information to con-
vert position information between object coordinates
(such asraster line and column numbers) and map
coordinates. When you display spatial objectsin a
view within a dialog window, several other coordi-
nate systems come into play. Sample script
pTcoorp.sML Will help you explore these coordinate

“

“

select File / Open / *.SML
File and choose /LTEDATA /
SML / PTCOORD.SML

run the script

M left-click in the window to

place the point tool
right-click to view
coordinates in the
Console window

systems and illustrates the resources available to | & try various point locations
convert between them. The script displays apreset L%gf;nha‘;‘évg‘;eg'ggsm
ras_ter (Wlth UTM_ coordi nate_s) and vector (_)bject @ study the script to see
(with latitude/longitude coordinates) and providesa how the coordinate
point graphic tool with which you can select aposi- transformations are

; i ht-cli ; performed
tlon_. _Wh_en you apezlythﬁtool (rlglght (:_Il((:jk), the poi r_lt 7 Close the Find Point
position is reported in the console window in vari- Coordinates window
ous coordinate systems. when you are finished
A graphic tool used inaview returns posi- [EEEESTAEEELEEE EIr=
tionsinview coordinates. For asinglegroup | teentie: &% _fptors =

@i 2

»

view, view coordinates are the group map
coordinates. The group coordinate system
is determined initially by the georeference
of thefirst layer added to the group, but can
be modified by ascript by resetting the Pro-
jection class for the group. Screen
coordinatesarethe coordinates of thedraw-
ing area of the view (in pixels), where the
obegjctsare actually displayed. If you want
the script to draw additional features into
thisdrawing area, the drawing functionsre-

B

Fe R oeTote e

quire screen coordinates. Eachlayerinthe |z
view also haslayer coordinates, which are

Left-click in the uindow to locate a point, |

Close

the object coordinates for the object in the
layer, aswell aslayer map coordinates. The Geodata
Display View function group includes functionsto
translate between view
coordinates and screen,
layer, and layer map coor-
dinates.

in Latitude / Longitude

Yiew coordinates: = = 633864,05, y = 4730504,92
Screen coordinates: & = 67, y = 266
Raster layer {ob ject} coordinates: x = 82,68, y = 366,80
Yector layer (ob_ject} coordinates; x = 326.33, y = 2408,09
Raster layer nap coordinates: x = 633886.,07, y = 4730470,08

in Universal Transverse Hercator Zone 13 (H 108 to H 102}
Yector layer nap coordinates: x = -103.36, y = 42,72

Group coordinates = Wiew coordinates for group wview,
Group coordinate system = Universal Transverse Hercator

page 35

Spatial Manipulation Language

Movie Generation Scripts

STEPS

M select Process / SML /
Edit Script from the
TNTmips main menu

M choose File / Open/
* SML File and select
from your main TNT
directory custom / MmoviE /
VSHEDMOV.SML

M study the script structure
and comments

An SML script can create and record custom anima-
tions from your geospatial data. The sample script
inthisexercise createsamoviefileshowing aseries
of viewsheds computed from an elevation raster at
different points along avector line.

Any animation consists of a gradually-varying se-
guence of static frames. A movie generation script
captures frames from the contents of one or more
view windows created by the script and copies each

frameinto an output MPEG or AV file. Themovie
Fumetion Group... fFrane can therefore record any sequential change in the
e B view window(s) used to create the frames. Func-
(iege i tions in the Frame and Movie function groups are
ranelreateFronYiew) i

FrancCreateGC : used to set up the generic frame and movie
FraneGetHeight - fiovis parameters, capture the view window con-

FraneGetHidth uncLion FOUP ., . + ovlie
— ; tentsto aframe, and copy the frame contents

HoviefAddFrane
HovieExit
HovieGetFileExt
HovieInit
HovieSetFornat

Eii viewshed.avi - Windows Media Playsr

totheoutput file. You can also annotateeach
frame with text or position markers using

HovioSothranetloight functionsin the Drawing function group.
HovieSetFraneRate
HovieSetFraneHidth
HovieStart
HovieStop

Sequentia changesin the View window can
beachievedin severa ways. Thescript could
add and remove aseriesof pre-prepared lay-

Filz Wiew Play Favorites Go Upgrade Help eI'S '[O and frOI’T\ the VlaN. |t COU|d al&)

modify the display parametersfor asingle
continuing layer. For vector objects, this
could involve basing the element styleson
aseguenceof varying attribute values (such
as population in different years). Thefinal
method is exemplified by the vsHEDMOV
script: the script itself computesthe changes
from the supplied dataand parameters. For
each frame in this movie, the script com-
putes the current viewshed and displays it
intheview window inyellow over ashaded-

;
bml‘m “ o »|‘;‘§‘

relief rendering of the elevation model.

b —

More about the movie generation scripts is available in an online document at

http://www.microimages.com/relnotes/v64/viewmarks.pdf

page 36

Spatial Manipulation Language

3D Simulation Scripts

An SML movie script can also use the 3D perspec-
tive rendering capabilities of TNTmips to record
custom 3D animations. A script can open a3D per-
spective view window and change the viewing
parameters for each frame in the movie, alowing
you to moveover, on, and around a3D surface. SML
incorporatesall of thefunctionality of the 3D Simu-

STEPS

M choose File / Open/
*.SML File and select
from your main TNT
directory custom / MmoviE /
PATHCHT1.SML

M study the script structure
and comments

lation process in TNTmips, but expands your

control over theviewing parameters.

Class members and methods in the
VIEWPOINT3D class are used to manipulate
the settingsfor the 3D view. Each 3D view has

Compresaar
|Fu|| Frames (Uncompressed) ﬂ Cancel
Microgoft Videa 1 - Q
Microsoft RLE
Microsoft H. 263 Video Codec
Microsoft H 261 Video Codec
Indeo® video 5.04 \ —

-

aviewer position and apositionthat the viewer
is looking at, the point where the current view is
centered. SML givesyou complete control over both
positions. You can set viewer and view center posi-
tion coordinates explicitly for each frame, or move
either position aspecified distance or directionrela
tiveto the previous position. Either position can be
rotated around the other. You can aso set either
position and then specify an azimuth angle, eleva-
tionangle, and distance
to define the other.

<HT1.avi - Windows Media Player
File wiewr Play Favorites Go Help

To record a movie from an
SML script, you must have
software capable of
encoding MPEG files (any
computer platform) or AVI
files (Windows platform
only). When recording
begins, a window opens to
allow you to select
compression options.

@l Fiadio &8s Music 79 Media Guide

The paTHCHTL script
copiesboth 3D and 2D
viewsinto each movie
frame. Theviewer and
view center positions
are computed from 2D
vector lines that are
displayed in the 2D
view but hidden in the
3D view. The current
viewer and view center
positions are shown by symbols drawn into the 2D
portion of each frame after the views are captured.

LR (B |

44 44 b M| 3

Movies created from these sample SML movie scripts can be downloaded from

http://www.microimages.com/promo/smimovies

page 37

Spatial Manipulation Language

APPLIDATs

STEPS

M select Custom /
APPLIDAT / BENCHMRK

M click the Instructions icon

button on the toolbar

press [Close] on the

Help window

click the TNT Benchmark

icon button

try some of the

benchmark processes,

then press [Exit]

M click the Exit button on
the toolbar

=

=

=

Benchmark APPLIDAT
toolbar

TNT Benchmark SML script

=5HL benchnarks

Qgﬁ é% maE
/

\
Instruéions TNTview Exit

M select File / Open/ RVC
Object in the SML
window

M select /Litepata/ smL/
SMLLAYER.RVC / ARROW

M select File / Edit Toolbar
Icon

M in the Select Bitmap
Pattern window, click the
Set button and choose
the Advisor set from the
list

M select the "gold" N
icon illustrated G
and click OK @
M click [Yes] to

confirm your choice in

the Verify dialog box

You can use SML to create self-contained, turnkey
geospatia application productscall APPLIDATs. An
APPLIDAT canincludean SML script or aseriesof
scriptsa ong with the geospatial datato be processed.
Since data and scripts are bundled, they are loaded
together automatically when the APPLIDAT isrun.
There is no need for the user to navigate and load
thedatamanually. An APPLIDAT isthereforeideal
for providing data with custom processing applica-
tions to users who are not familiar with the TNT
interface.

An APPLIDAT includes one or more SML script
objectsinaTNT Project Filethat has been renamed
with the .SML file extension. Users can run an
APPLIDAT by double-clicking on thefile or by us-
ing adesktop shortcut. (Asshown by thisexercise,
TNTmipsuserscan alsorunan APPLIDAT fromthe
Custom / APPLIDAT menu.) Running an
APPLIDAT launches TNTview (with the standard
interface hidden) and opens a custom toolbar with
aniconfor eachincluded script. |con buttonsto open
the standard TNTview and to Exit the APPLIDAT
aso are included automatically. You can write the
component scriptsto usedatastored inthesame SML
Project File or in an accompanying standard Project
Filein the same directory.

When ascript objectiscreatedinaProject File, TNT
automatically assigns it a default icon subobject,
which you may edit or change for a different icon.
When the APPLIDAT is launched, script icon but-
tons are added to the toolbar from the left in
alphabetical order of the script names. If your
APPLIDAT includes severa scripts that should be
runin adefined order, namethe scripts so the alpha-
betical order of their names follows the defined
processing sequence. A script object's description
isused automatically asthe Tool Tip for itsicon but-
ton.

page 38

Spatial Manipulation Language

Providing APPLIDAT Instructions

SML letsyou write APPLIDATSsthat have adiscov-
erableinterface. Your users need not be trained in
(or even aware of) the TNT products. All the in-
structions needed can be discovered the first time
the APPLIDAT isused, or easily rediscovered after
alapseof time. Simply includeinyour APPLIDAT
a copy of the HELP.svL script from the BENCHMARK
APPLIDAT. Thisscript createsadialog window to
display HTML-formatted text and illustrations. The
HTML instruction set is stored as a subobject of the
HELP.SML SCript.

Aninstruction set is easy to create and maintain be-
causeyou can useany editor that supportstheHTML
format. Thus you can write your instructionsin a
program such as Microsoft Word and use its Save
As... option to save the filein HTML format. To
associate your new help file with the APPLIDAT,
edit the HELP script in the SML script editor and se-
lect Add Text Objects from the File menu. When
you select your HTML file, TNT copies it to a
subobject of the script.

= 5patial Hanipulation Language

NOTE: to open script objects
in an APPLIDAT Project File
(.SML file extension) in the
SML editor, you must use
File / Open / *.SML File.
When you select an SML file
that is actually a Project File,
a Select Object window
opens to allow you to select
a script object from within the
file.

STEPS

M choose File / Open/
*.SML File in the SML
window

select BENCHMRK.SML in
the Select File window
select the Help script
object in the Select
Object window
examine the script
structure and comments

o

o

You can copy this

File Edit Inzert Syntawx Help
% | Help script to
your own
¥ Lo APPLIDAT file
% A sanple script that shouws how to create a sinple dialog with HTHL and use it directly
: help and a close button to create your

class XnForn forn:
class ¥nPushButton button;

The function that will be called when the

—

“close" button is clicked

Instructions or
Help window. An
instruction set
won’t become

% Create a dialog. The string passed here
Ewventually it will pull the title out of
forn = CreateFornDialog{"Help"};
forn.height = 4003

forn,width = 500;

&

iz the title of the dialog.
the <title> tag in the HTHL

separated from
its APPLIDAT
because it is
bundled with the

% Create a close button

Called when the user clicks the “"Close™ button,
proc cbClose{} {

Just close the dialog.

other resources.

DialogClose(forn}: # Hill cause a popdown,causing cbPopdown to be ca

’ il
I~ | =
II Run,.. I {anval

page 39

Spatial Manipulation Language

BIOMASS2 APPLIDAT

The Biomass2 APPLIDAT was written by
Microlmagesto provide an example and prototype
[U, of aturnkey APPLIDAT product. Itil-

r7 | B | lustrateshow an APPLIDAT can let the
user carry out a series of operationson
the input data and automatically pass
intermediate products al ong to the next

Biomass
Mapping

Instructions

Asset 3D . . L
Management Simulation operation. In this example the app_hcaﬂon would

allow afarmer to determine crop biomass for any
STEPS designated area from a color infrared image, dis-

o select Support/ play farm assets over the image and biomass map,

Maintenance / Project
File from the TNTmips
main menu and examine
the contents of
BIOMASS2.SML in the
Custom / APPLIDAT
folder in your main TNT
products folder

exit from Project File
Maintenance and select
Custom / APPLIDAT /
BIOMASS2

click the Instructions icon
button and read the
instructions

click on the Biomass
Mapping icon button,
define an area to map,
filter the result, and
convert the result to a
vector

M exit from the Biomass

Mapping window

M run the Asset Mapping

and 3D Simulation
applications

exit fromthe Biomass2
APPLIDAT when you are
finished

and display a3D perspectiveview of theimage and
biomass map. The Instructions for the BiomAss2
APPLIDAT provide a more detailed overview of
each operation.

The APPLIDAT file (Biomass2.smL) includes three
processing script objects: Biomass (Biomass Map-
ping), Pinmap (Asset Management), and View3D
(3D Simulation) that are designed to be run in that
order (notethe alphabetical order of the script names
and the positions of their icons in the toolbar). In-
structionsfor the product are contained in the script
called About (note that the script itself containsthe
HTML formatted instructions, rather than using an
HTML subobject). All of theinput data are in the
APPLIDAT file. Spatia objects produced by the
APPLIDAT arestored and retrieved asneeded in an
accompanying Project Filesiomass.RrvC.

After you have runthe APPLIDAT, you should ex-
aminethe structure of the component scripts. Each
script contains codeto createits dialog window and
controls, callback procedures assigned to those con-
trols, and instructions for input and output of data.
You can use these asmodel sin devel oping your own
turnkey APPLIDAT programs.

page 40

Spatial Manipulation Language

Tool Scripts and Macro Scripts

Tool Scripts and Macro Scripts are speciaized forms of SML scripts that are
launched from anicon button in a View window and can automatically accessand
operate on the objectsin the view. You can create tool scripts or macro scripts
that enable any user to perform custom procedures on spatial datalayers|oaded
into the view. After you add atool script or macro script, itsicon button appears
on thetoolbar of every View window acrossall TNT processes. And every View
window offers menu selectionsthat let you easily add and del ete Tool scriptsand
Macro scripts (Options/ Customize)

EGroup 1 - Group View 1 _|C][x]

View Tool LegendYiew GPS Options

@D +2| PIRIR(@S) Cotors-
I g o o

~ Differential Zooning

Tool scripts and macro
\scripts are launched from

icon buttons on a View

window's toolbar.

Positional Accuracy -~

* Show Scale/Position

" Show Status Line
Resize to...
Position Report
Geol ock

*: _Custonize " Hacro Scripts...
DataTlPS “ Tool Scripts,., [

For the script writer,

a - : ' - macro scripts and tool
Scripts provi de astreaml ined way to prow de custom processing capabilities that
require visual interaction with the spatial data. To do this in a standard SML
script, you have to provide the code to create and manage the View window and
itscontents. But because macro scripts and tool scriptsareinvoked from aView
window, most of that management is taken care of automatically, and you can
focus on coding the custom processsing itself.

- Hlnduu

Macro scripts and tool scripts:

* are executed from an icon button on aView window toolbar;

* can access features of the current view, such aslayers, extents, projection, se-
lected elements, zoom factor, scale, and styles;

* can operate on objectsin the current view or objects containing the same area;

 can add anewly-created layer to the view;

* canstart an external program and provideit with data derived from the current
view.

A tool scriptinvokesadrawing tool and/or adialog window (defined by the script-

writer) that allow the user to interact with the spatial datain the view window.

For example, the user could outline an area or select particular elements to be

processed. A macro script does not allow such graphical interaction, but can be

set up with adrop-down menu that provides program options.

page 41

Spatial Manipulation Language

Macro Script Setup

To add amacro script so it can berun

from anicon on the View window toolbar,

choose Options/ Customize / Macro Scripts from the View window in any pro-
cess. Making this selection opens the Customize Macro Scripts window. If you

= Custonize Hacro Scripts

NI

want to add an existing script, click
on the Add icon button to open the

| Sample macro scripts can
New Add be found in the MACRSCR

subdirectory in your primary

TNT directory.

=fuery Editor

Script Edit Insert Syntax

Select File window so you can navi-
gatetotothe script and select it. To
create a new macro script, click on
the New icon button. A Query Edi-
tor window opens with a
default script containing alist

Yiew HacroScript

The following synbols are predefined
class YIEH Yiew
class GROUP Group
class LAYOUT Layout
=tring HenuChoice#

Tl et a2 0w e 2 W]

fuse to access the view the scri)
fuse to access the group being w.
fuse to access the layout being '
fuill contain the text from the :

of predefined symbols that
you can use in the macro
script. TheQuery Editor win-
dow includes all the script-
creation and editing features
of thestandard SML window.

=

]

=

| 0K

Once you have created or

added the macro script, the Macro Script Propertieswindow opens. Thiswindow
lets you choose an icon, indicate whether the script is launched from a simple
button or amenu button, set up the Tool Tip for theicon button, enter menu items
if amenu button isused, and test your script. Choose asimple button to haveyour
tool script execute automatically without further input from the user. Choose a
menu button if you want drop-down choices presented when the buttonis clicked.

If Menu Button is chosen in the
Macro Script Propertieswindow, the
Menu Choices text field becomes
active so you can enter the menu
choices needed for the script.

Enter the Tool Tip you want directly
in the Tool Tip field. This Tool Tip
appearswhenthe cursor hoversover
the macro script'siconin the View
window. The Test button at the bot-

=Hacro Script Properties |00]
File: Ic:\l]ata\S Sinple Button
Tcon?: @ Type: Henu Button il
TuolTi.p:IZoDn to Scale
Henu Choices
A

Choose an icon, ToolTip and other
features in the Macro Script Proper-
ties dialog.

]
= 1

tom of thewindow letsyou run your

0k | Cancel | Edit...| Test | Help |

script without closing the custom-

ize windows. Click OK in the Macro Script Properties and Customize Macro
Scriptswindowswhen you are done adding, devel oping, and/or testing your script.

page 42

Spatial Manipulation Language

Sample Macro Script: Zoom to Scale

Several sample macro scripts are provided in the
MACRSCR subdirectory in your primary TNT direc-

tory. Study these samples to understand |[ErFer YT M

how to structure your own macro scripts. File: [c:\Data\SHL\zo0nto. snl
Toon: [Ture: Henu Button —

The Zoom to Scale macro script lets the | eotrie: [zom to seale

viewer raj|$|ay the View window at one | tenu Choices

12000

script button's dropdown menu. For proper |[a'a:

0.5 n.

of several map scales selected from the ||26 \

script function, the objectsinthe view win-

=

AN 0

AN

dow must be either georeferenced or \ _
0K | Cancel Edl.t...l Test | Help |

scale-cdlibrated.

The menu selections are not predetermined by the
Zoom to Scale script. Whenyou install the script,
you arefreeto set up the menu choiceswith therange
of scale selections most appropriate for your data.
The script accepts scale input from the menu as ei-
ther map scale or ground dimensions. If the menu
entry is purely numeric, it is interpreted as the de-
nominator of the map scale fraction. For example,
12000 isinterpreted as a map scale of 1:12000. If
the menu entry isin two parts separated by a space
(suchas"1 mi"), the first part of the entry isinter-
preted asaground dimensionin miles. (Thisportion
of the script can be easily modified to accept dimen-

N\
When installing the Zoom to
Scale script, set up scale
menu choices that are most
appropriate for your spatial
data.

sions in kilometers or other |[EEEEEEErETETEE—

distance units.) Thescript then | File Edic Tnert Suntax

le{Yiew,StrT

mmy == f i

&I (HunberTokens{HenuChoice$,
Vi

Choice$})s

performsthe necessary calcula

3

tions and setsthe new map scale |[else if tHunberTokens(HenuChoices,” 3 == 2) £

widthneters = Yiew.PinelSizeHillineters * Yiew Hidth / 10003

for the VIe\N WI ndOW heightneters = Yiew.PinelSizeHillineters * Yiew.Height / 1000;

if (uidthneters < heightneters) f

nindin = uidthneters:

The predefined macro script elsi_sd_ o
. . . nindin = heightneters;
variable MenuChoi ce$ is used 3

3

newdin = StrToHun(GetToken{HenuChoice®," ",1)} # GetUnitConvDi

to reprmt the u%r‘s %Iectlon neuscale = newdin / nindin * 1.1;

VieuSetHapScale(Vieu neuscaled;

i

from the macro script menu but-

=

ton. For numeric input, this

Run, .. |Cancel

string must be converted to a numeric value using
the St r ToNun() function.

More about the Zoom to Scale macro script is available in an online document at

http://www.microimages.com/relnotes/v64/zoomto.pdf

page 43

Spatial Manipulation Language

Sample Macro Script: Snapshot

=Spatial Hanipulation Language

File Edit Insert Syntax

The Snapshot script isasimple example of amacro
script that processes data from a View window and
launches an external application. Thescript captures
ascreen snapshot of the view window and exportsit
to the image file format you have chosen from the
script button's dropdown menu. The script then
launchesthe application program that you have pre-
vioudly registered with your operating system to open
that filetype.

==ry The Snapshot script has been
nelp | Writtento create specificfilefor-

Export and open the snapshut
if {HenuChoice$ == "JPEG"}

CloseRaster(ras};
else if {HenuChoice$ == "PHG"} {
CloseRaster(ras};

else if (HenuChoice$ == "BHP"} £

CloseRaster(ras};

OpenRaster{ras, rast, SInfu .Filenane,
ConvertConpToConpiras, rast.$¥Info.Filenane, “snapa™, 2d}:

JregHandle . exportConpressFactor = 753

ExportRaster{jpeghandls, _contest,ScriptDir + “snapshot, jpg”, | S.OHS. When you add thiS macro

Runfissociatedfpplication{_context,Scriptlir + "snapshot. jpg"}:
3

OpenRaster{ras, rast.$Info,Filenane,

ConvertConpToConpiras, rast.$¥Info.Filenane, “snapa™, 2d}: mUS ﬁ up Chol Cesfor the S:rl pt

OpenRaster({ras, rast,$Info,Filenane,

ConvertConpTaConp{ras, rast,#Info,Filenane, "snapa”, 2d}; entry must exactly match the

“snap"}3

“snap"}3

-| mats: JPEG, PNG, BMP, PCX,

“snap"}3 GIF, TIFF, and ASCII fileswith

either TXT or DOC file exten-

script to a View window, you

ExportRaster (pngHandls, _contest.Scriptlir + “snapshot.png”, button menu from thls%t of for-

Runfissociatedipplication{_context,ScriptDir + "snapshot.png™s

mats. The text for each menu

ExportRaster{bnpHandle, _content.ScriptDir + “snapshot.bnp”, r Charmta’ str'ng exp&taj by the

RunfssociatedApplication{_context.ScriptDir + “snapshot.bnp™}:
3

4| script, including case (for ex-

[FE| e ample, JPEG rather than Jpeg).

Saved snapshot of View
window with raster
background and several
vector overlays.

The script initially saves the snapshot as a tempo-
rary color compositeraster object. Thebit depth of
the compositeis determined by your computer'sdis-
play settings. Thescript segment for each fileformat
performs acolor conversion to the color depth ap-
propriate for that format prior to export.

The output fileisautomatically savedin
the same directory as the script, then the
%" file'sassociated application islaunched.
These operationsmake use of aclassvari-
able _cont ext, which specifies the
internal context information for thescript.
Class member _context. ScriptDir

* gpecifiesthedirectory in which the script
isfound.

page 44

Spatial Manipulation Language

Tool Script Templates

To add atool script to run fromanicon button onthe
View window toolbar, choose Options/ Customize/
Tool Scriptsfromthe View window inany TNT pro-
cessthat hasaView window. Making thisselection
opensthe Customize Tool Scriptswindow, whichis
nearly identical to the Customize

. . . Query Editor M mE3
Macro Scriptswindow discussed [
| cript Edit Insert Syntax Help
pre\/lously. # View ToolScript i

The following synbols are predefined
class YIEH View fuse to access the view the tool

To create anew tool script, click
on the New icon button to open
the Query Editor window, which
shows the tool script template.
The template lists a number of
predefined symbols and values
that you can usein any tool script. o - i i

. . # The fnlluuu_lg scrlpr_. functions will be called (%l‘ usx_ad in the =
Thepredefined valuesincludethe | i s s 2 oot *Sioes Sonsaining she - hunc:
X andY coordinatesof thescreen [fict o Cose beeusen the sao dinmse o
cursor withintheview (in pixels)

Called the first time the tool is activated,

and valuesthat record mouse but- 1 IF tho tool inplenents a dialog it should bo created tbut not ¢

ton actions. #3 #end of OnInitialize

Called when tool is to be destroyed, will not be called if tool
If the tool implements a dialog it should be destroyed here,
£
3

#

#

#

class GROUP Group fuse to access the group being vi
class LAYOUT Layout fuse to access the layout being
nunber ToolIsfActive Hill be © if tool is inactive or
4

The follouwing values are also predefined and are valid when the
functions are called which deal with pointer and keyboard event
nunber PointerX Pointer X coordinate within wiew
nunber PointerY Pointer Y coordinate within view
nunber ShiftPressed 1 if <shift> key being pressed or
nunber CtrlPressed 1 if <ctrl> key being pressed or
nunber LeftButtonPressed 1 if left pointer button pressed
4 number RightButtonPressed 1 if right pointer button pressec|™
nuwber HiddleButtonPressed 1 if middle pointer button presse
#

unc OnDestroy () £
end of OnDestroy

#

Additionally, thetool script tem- |fs
pl aeln(j Udes §<d etal deflnltl Ons : Called when tool is activated,
of functionsli ke|y tobeusedina : iﬂnﬁhﬁnﬁﬁiivﬂilﬁ'e?“ a dialog it should be “nanaged” {displai |
tool script. These include func- [' | b
tions used the first time atool is
activated; when thetool is destroyed; when thetool
is activated and deactivated; when the tool is sus- | Teol Scripticon buttons
pended (during redraw) and resumed (after redraw); [SPPS3! fo the left of any

. . / acro Script icon buttons on
when the left, right, or middle mouse button is | e view window toolbar.
pressed or rel eased; when the cursor moveswith-
out abutton press; when the cursor moveswith a
button press; when the cursor enters or leaves
the View window; and when the user presses a
key. To create your script, remove the comment
characters (#) to theleft of each function defini-

tion you need and add codeto specify thedesired

macro script buttons

action to be carried out by that function. _:__

page 45

Spatial Manipulation Language

Sample Tool Script: Select Point

A number of sample tool
scripts are provided with the
TNT products in the TooLscr
subdirectory under your
primary TNT directory. You
can use components from
any or all of these scripts to
create the custom tool you
need for your specialized
application.

=Spatial Hanipulation Language _[Dlx]

File Edit Insert Syntax

The point selection script (poiNTsEL.sML) illustrates
how to set up atool script that lets the user interac-
tively select el ementsfromavector objectinthe View
window. In this case the script selects the closest
point element when the left mouse buttonis pressed;
this action is controlled by the definition for the
OnLeftButtonPress() function. This simple script
merely selects the point, but the button press func-
tion could be expanded to use the selected point for
further processing, suchas
writing the map coordi-

Help

Created by: Hark Snith
Host recent revision: 9-2001

The follouing synbols are predefined
class VIEH Vieu
class GROUP Group
class LAYOUT Layout

POINTSEL.SHL - Allows user to select and highlight a vector point. &

fuse to access the vieu the tool script is
fuse to access the group being viewed if th
fuse to access the layout being viewed if t

nates of each point to an
external file.

Becauseatoolscript isex-
ecuted interactively froma

The following values are also predefined and are valid when the various [
functions are called which deal with pointer and keyboard events.
nunber PointerX Pointer X coordinate within wiew in pikels
nunber PointerY Pointer Y coordinate within view in pixels

View window, all process-

Variable declarations

class YECTORLAYER vectorLayer;
class Vector targetVector:
class GROUP activegroup:

Checks layer to see if it is valid.
func checklLayer(}
local boolean valid = true;

Get names layers if usable,

valid = falses

PopupHessage{“No points!“}s
valid = false;

If not output error nessages,
Get nane of active layer if it is usable.
if (activegroup.ActiveLayer.Type == ""

PopupHessage{“Group has no layers!™);

else if (activegroup,fctivelayer,Type == "Vector"} f
vectorLayer = activegroup,fActivelayer;
DispGetYectorFronLayer{targetYector, vectorlLayer);
if {targetYector.$Info.HunPoints { 1} €

ingiscarried out by script
functions executed by
mouse actions or by ac-
S| tionscarried outindiaog
windows created by the
script. The function defi-
nitionsyou providefor the
predefined function names
can call other functions
and procedures defined
elsewhere in the tool
] script. In the point selec-

If not output an error ness
)t

3
else £
Popuptlessage{"Not\a vector!"};
valid = false:
\

] = | tion script, for example,

\

! Bl he OnLeftButtonPress()

\

Tool scripts can include user-
defined procedures and
functions that are called by
other functions in the script.

function calls a previously-defined checkLayer()
function that checks to make sure that the active
group contains alayer, and that the layer isavector
object. TheOnlnitializefunction also callsaproce-
dure cbGroup() to identify the active group in a
multigroup layout. This code generalizes the tool
script for use in either agroup view or layout view
window.

page 46

Spatial Manipulation Language

Sample Tool Script: ViewMarks

TheViewMarkstool script (verooL.svL) alowsyou
torecord alist of position markersfor the View win-
dow. A ViewMark records the map coordinates of
the current view center (in latitude/longitude) and
the map scale. Oncethelist iscreated, you can se-
lect aViewMark and recenter the View window on
that location at thedesignated scale. ViewMarksare
particularly useful for layoutsthat cover alarge geo-
graphic area, especialy when thelayout useslimited
map scalevisibility to add and remove layersasyou
zoomin and out.

= Spatial Hanipulation Language

TheViewMarks script createsa

File Edit Insert Suyntax

=VYiewpoint List O]]
OI=IE #=| X
Unadilla At

Jones Farn

Palnyra Area

Palnyra Town

Syracuse Fnd Floodplain | s

vPTOOL.SML lets you pick a
viewpoint from the Viewpoint
List to center the view at that
location and scale.

_[Cx]
Help

Viewpoint List dialog window
that provides an interactive list
as well as buttons used to ini-
tiate script actions; there is no
graphic tool created by the
script. Thisdialogiscreated by
the Onlnitialize() function. The
icon buttons on the window et
you add or remove ViewMarks
fromthelist and zoom to the se-
lected mark. Other push buttons
let you savethelist to atextfile,
open an existing viewpoint list
file, create a new list, or close

ToolScript for recording

class YIEH Vieu
class GROUP Group
class LAYOUT Layout
nunber ToolIsActive

AE A AE B A WA A

class XnForn dlgforn;
class ¥nList poslisty
class HAPPROJ pro jlatLon;

class FILE posfile;
nunber ischanged;
nunber nunpos:
array posX[11:

array posY[1]
array posScale[11;

Save the list to a file.
func DoSave {(}

“viewpoint position™ as center and zoonm.

The follouing synbols are predefined

class TRANSPARH transtapToView:

nunber setDefaultHhenClose;

if (numpos == 0) return;

posfilenaned = GetOutputFileMame("","Select position file to sa
DeleteFile{posfilenanet);

If you get an error that fopen{} is being passed too nany parc
get a new tntdisp,exe,
posfile = fopen{posfilenanes,”w", "UTF87):
if (posfile == 0) return {falsel): i

=

fuse to access the view the tool sc|
fuse to access the group being vies
fuse to access the layout being vie
Hill be 0 if tool is inactive or 1

The 3rd paraneter was added 01-Feb-20(

thewindow. Each of these but-

! =

Run... | Caztnd

tons callsaseparate function or
procedure defined in the tool script.

When you add aViewMark, aprompt window opens
to let you name the mark. (The default nameisthe
zoom level and coordinate position). TheViewMark
namesarestoredinalist widget (classXmList). The
x-coordinate, y-coordinate, and scale values are
stored in separate numeric arrays.

= Pronpt _ ||

Enter view position nane:
1:57700 -96,390508 40, 701999

0K | Eancell Help |

More about the ViewMarks tool script is available in an online document at

http://www.microimages.com/relnotes/v64/viewmarks.pdf

page 47

Spatial Manipulation Language

Sample Tool Script: Raster Profile

| TheRaster Profiletool script (RastPRoF.sML) provides
alinetool that records and plots aprofile of theras-

=Raster profile |00]
Raster: Tassajara
e8]

ter cell valuesaong alinedrawn by theuser.
Thetarget raster for the profile must be the
active layer in the view, and x-y positions
for thevaluesarerecorded in raster coordi-
nates (column and line number). Although
the profile plot is the end result in this ex-
ample, the script can be modified to convert
positions to map coordinates, apply addi-
tional processing to the profilevalues, or writethem
out to atext file.

353
228,173 5354, 199

M m/E3
Help

Qv A& =5 B/

A portion of the Onlnitialize() function in the script
invokesastandard interactivelinetool:

tool = ViewCreatelineTool (View;
Tool AddCal | back(t ool . Appl yCal | back,

cbTool Apply);
(The variable t ool was previously declared as a
member of class LineTool.) The procedure
cbTool Appl y(), which acquires the profile, is
called whenthetool isapplied by aright-mouse-but-
ton press, Thislinkageisset up
File Edit Tnsert Syntax Help by the second statement in the
excerpt above, which adds the

|

RASTFROF,SHL
Created by: Hark Snith

Host recent revision: 8-2001

This toolscript allows the user to draw a line using a line tool.
the raster data from the active raster along the line and then cr
the profile of the raster along the line.

The active layer may not be a composite raster,
This script requires THTnips version 6.6,
#

The following synbols are predefined
class YIEH Yiew fuse to access the view the tool sc
¥ class GROUP Group fuse to access the group being vier

Variable declarations

class XnForn forn;

class LineTool tool;

class LAYER rasterLayer;:

class Raster targetRaster:

class ¥nDrawingfrea das

class GraphicsContext gc:

class GROUP group;

string rasterHaneds

nuneric doGraph, hasHull;

array valuel[10000001;

array draw[100000013

array graphx[31, graphyl31;

nuneric nin, nax, count, nullVal;

class POINT2D startpoint:

Iclass POINT2D endpoint: i
] I}

=
| Run, .. | Ceneei

procedure name to the tool's
ApplyCallback list. Thisstruc-
ture dispenseswith the need for
a separate OnRightButtonPush
function.

The script also demonstrates
how the result of an action can
be shown graphically in awin-
dow created by the script. The
codethat drawsthe graph axes,
labels, and profile is contained
in the procedure cbRedr aw()

defined in the script.

page 48

Spatial Manipulation Language

Sample Tool Script: Area Statistics

The Area Statisticstool script (REGsTaTS.SML) Shows
how you can create acustom tool tolet the user draw
apolygon in the view window, convert the polygon
toaregion, and usetheregion to operate on another
object. In this example, the region is used for the
simpletask of extracting statisticsfrom araster layer
intheview. But the script could be modified to per-
form many other functions, such as creating amask
raster or extracting elements from a vector object.
The region operations are not restricted to layersin
the view; you can operate on any georeferenced ob-
jectsthat overlap the defined region.

This script operates on araster object that isthe ac-
tive layer in the view. In the example shown here,
the polygon is drawn on an image layer overlying
the active layer, which contains an elevation raster.
Using the region defined by the polygon tool, the

MWk

=Region Statistics
Raster: DEH

Cells: 31599

Hull Cells: O

Hininun: 256.00

Haninuni 671,00

Hean: 370.14

Standard Deviation: 84,43
Area; 25264213,28
Perineter: 29127.57
Centroid: 217379,12, 3977252,07
Surface Area: 2661252740

script computes the number of cells, number of null

Distance Units: neters —

fAirea Units: square neters

cells, minimum, maximum, mean and standard de-

viation of the included raster values, and the area,

Save fs... Close

perimeter, centroid location, and surface areaof the |
region. (Statisticscan be com-
puted for any type of grayscale

File Edit Insert Syntax

= Spatial Hanipulation Language

1 (w3
Help

or binary raster, but not for com-
posite rasters or RGB raster
layers)) Thestatisticsareshown
in a Region Statistics dialog
window created by the script.
The script can convert distance
and area values to the units se-
lected from option menuson the
window. Thestatisticscan also

The script then outputs the

#
#

class YIEH Vieu
class GROUP Group

Yariable declarations
class XnForn forn, buttonRows

class HdispRegionTool tools;
class LAYER rasterlayer:
class Raster targetRaster
class XnDrawingArea daj
class GraphicsContext gcj
string rasterHaned;

——————
REGSTATS,SHL - Allous user to select an area of a non-composite r
nininun, narinun, nean, standard deviation, area, perineter, cent
and surface area over that region. The user nay choose any distar
area units for the output to be displayed in.

Requires THTnips wersion 6.4

The follouing synbols are predefined

class XnSeparator linel, line2;

N

nunber of cells, number of non-null

fuse to access the wview the tool s
fuse to access the group being vies

class P Iten

; clo 13

be saved to atext file.

class POINT2D centroid;
numeric distScale. areaScale:

class XnOptionHenu distHenu, areaHenus
nuweric nin, max, mean, stdlev, count, cells, surface, area, perime

i

] [

Run, .. |Conont

More about the Area Statistics tool script is available in an online document at

http://www.microimages.com/relnotes/v64/polystats.pdf

page 49

Spatial Manipulation Language

Sample Tool Script: Region Statistics
The Region Statisticstool script (REGSTATP.SML)

Options etp || demonstrates the design for a script that lets
the user select polygons from the view window,
createsaregion from the selected polygons, and
uses the resulting region to perform an action
on another object. The example task for this
script isthe same asfor the Area Statisticstool
script: compute statistics from araster layer in
theview. Likethat script, however, you could
rewritethecbTool Appl y() procedureto per-
form different types of operations on other
objects.

S This script lets you select one or more poly-
. gons from the top layer in the view (and checks to
jrfB LD make surethat that layer isavector object with poly-
A —— gons). Statisticsare computed for the bottom layer
Porinetons 16300.28 in the view; the script checks to make sure that that
Sorface frnas 5,85 layer isagrayscaleor binary raster object. The Re-
Distance Initss _ meters || gion Statisticswindow created by the scriptissimilar
A toits: [ssuare kiteeters || 1 the one used by the Area Statistics script, but in-
o ... | s | | cludes push-buttons at the top that let the user

e —— indicate whether the se-
e | lected polygon should be

I]n REGSTATp.SHL - Allows user to select an area of a non-composite raster
by selecting and deselecting polygons from a vector layer over the top

added to or subtracted from
¥ The ccript then outputs the nusber of cells, nusber of non-null cells, the I"egion, and a button to
e e S e e e e

and surface area over that region, The user nay choose any distance or ear eg
area units for the output to be displayed in, Cl ther on.
Requires THTnips version B..

L]

The following synbols are predefined The R%lon aatlﬂlcs&rl pt
class YIEH Yiew fuse to access the view the tool script i . .

class GROUP Group fuse to access the group being vieued if invokes a standard pol nt
Variable declarati i 1

e Snocn o tonon, plustinuss tool with predefined mouse
eToe UECTORLAYER vercorLasens button actions. A left but-
class LAYER rasterLayer; H
clase Vector targetVectors ton press places the point
class Raster targetRaster; .

clacs KnDrawingfirea da: tool, and aright button press
class GraphicsContext go: !

1. PointTool intTools J
e orforht selects the enclosing poly-

class PushButtonIlten saveButton, closeButton;
class XmPushButton clearicon; gon.
class TopeleButtonIten plusicon. ninusicon: i
D — | El

| Run,.. | Certand

More about the Region Statistics tool script is available in an online document at

http://www.microimages.com/relnotes/v64/regionstatistics.pdf

page 50

Spatial Manipulation Language

Sample Tool Script: Run Browser

The Run Browser tool script (UrLs.smL) is an ex-
ample of a custom script that launches an external ey Ul (egritfen 68 0
application program. Thescript allowsauser to set @m"' —' @lmlelalalcal
up and uselinks between spatial datain aview win-
dow and sites on the World Wide Web. Links can
be made to cell valuesin araster, or to specific at-
tribute values associated with
Layer: CBSDILS_Lite

VeCtor elements' One or more URE File: c:fTNT_zINfTI]I]LSCRfur‘]..txt
URLSs can be entered for each |[rrermrrre o e
Val ue. Once I|nks are set up, Yector Hode: -, Points -+ Hodes + Lines “* Polygons
the user can select an element |Action: 4 scan N
or cell in the view wi ndow, T \{u -
choose the desired URL, then \
havethe script launch the default web browser, which

. Turn on the Add button to set
then goes to the desired web address. up links, and the Scan button

. to use existing links. To use
To usethetool, left-click onthe polygon or cell de- | .-\ c'in scan mode. select

sired, then right-click to confirm the select tool is | your target URL and click
correctly positioned. The URL (s) associated withthe | [Launch Browser].
selected feature appear in the Select aURL window
that iscreated by the script. Choosethedesired URL,
then click on the Launch

E5elect a URL

Close |

=Text File Editor _IC[]
Browser button. File Fait o
[[CBSOILS_Lite : Crow Butte soil type polygon overlayl i

The associations between fpoly CLASS Class KeB3

uuu, statlab, iastate,edu/soils/osd/dat/K/KEITH, htnl

URLSs and element at- ||eeoly ciass tlass Jnp3

waw, statlab,iastate,edu/soils/osd/dat/)/ JAYEH, htnl

tributes or cell values are ||toly CLAss Class Bd:

wuu_ statlab.iastate.edu/soils/osd/dat/B/BANKARD htnl

storedin aseparatetext file, ||wis ke : class raster fron 6.06, 7,30, & 1010 <Graon, Red, HIREY
age . £33
specified in the sample |fus.nicroinages.con
uu, wheatworld,org

g:” pt aS URL.TXT. The text l;;l;.uznet.ksu.edu/uheatpage/
file lists the name and de- ||

Scrl ptlon for h ObJ eCt l;;l;.agpuh.nn.ca/text:’jululﬁ{crop_l.htn
eacl s, corn, arg
. . £52 W
with URL links. The asso- | |wuws.ag.uiue. edus~food-1absoyssoy, htnl
ciationsinthissampletool = =
script refer specifically to ce_pata / cB_soiLs.rvc /

CBSOILS_LITE, OF BEREA / BERCRPCL.R\/C/CLS_MAXLIKE.

More about the Run Browser tool script is available in an online document at

http://www.microimages.com/relnotes/v64/runbrowser.pdf

page 51

Spatial Manipulation Language

Sample Tool Script: Find Streets

TheFind Streetstool script (sTrReeTs.smL) illustrates
how a script can access database information and
perform specialized selection tasks. The script uses
=Search for a stree = astreet name entered by the user to locate and high-
0l lights vector lines representing the street. The user
may enter all or part of a street name, and the tool
script displays a list of all
streets containing that search
Enter all or part of the nane of the street to search for X
TERRINAS text. When the user picks a

\ 1] 4 I Cancel Help Street from the ||§, the SCI‘Ipt
\

= Pronp i (] 3

redraws the view at 1:30000
™ . et with all linesthat form parts of the street highlighted
e user enters a stree . . P
name and the tool script and c;et_wtered in the View. If al the ;treqs lines do
finds it on the map. not fit in the View at 1:30000, the View isredrawn
at ascalethat fully containsthe lines.

=ATLAS / Leve.22 - Layout View 1 The scri pt uses the cur-
View Tool LeégendView EPS Options Help rent h|gh||ght colorsfor
|| -5\ 2| 2| @ 0 @ CRE Ql&lilﬂl!li&ﬁj selected and active ele-
ST ments (Options/ Colors).

For thistool, the selected
street will haveauniform
appearance if both the
activeand selected colors
are the same (yellow in
thewindow illustration).

Vi | ot 3] | 5
View:| 26,6 Scale:| 30000 7| gt [1798174.71 e 903488,04 n
Tine to draus 1 Second = [The name of the town

_ andthezip codeareaso
sTReers.smLis coded towork | provided in the list of streets found. The script as-

with specific geodata from a .
sample atlas of France, You sumesthere are not two separate streetsin the same

must modify the script Zip code with the same name. If, however, it turns
before it will work with other | out that the search name belongs to two different
geodata and attributes. streets in the same zip code (one Main Street, the

other Main Drive, for example), only the first en-
countered islisted but both are highlighted when that
selectionismade.

More about the Find Streets tool script is available in an online document at

http://www.microimages.com/relnotes/v64/findstreets.pdf

page 52

Spatial Manipulation Language

Sample Tool Script: Flow Path

The Flow Path tool script shows how custom analy-
sisprocedures can be performed on layersin the cur-
rent view using an SML Tool Script. The script uses
SML watershed functions that operate on an eleva-
tion raster (DEM) that must be thefirst layer in the
View window.

When the user launches the script, it first executes
watershed functions to create a depressionless ver-
sion of the DEM and a complete set of vector flow
paths. These derived featuresarerequired by subse-
guent script steps; they are stored as temporary ob-
jects and are not displayed in the view. The script
then opens a FlowPath and
Buffer Zonewindow and cre-

EGroup 1 - Group Yiew 1

Vieu Tool LegendVYieuw GPS Options

=FlowPath and Buffer ZofmE]

el =] X]

" Hove Seed Point to FlowPath
I~ Conpute Flow Path

I” Compute Upstrean Basin

I Conpute Buffer Zone

Buffer Distance| =Y

atesagraphictool that allows

the user to place one or more & ;
watershed seed pointson the :
DEM or on anoverlying im-
age layer. Toggle buttons on
the window enable the user
to chooseto computeand dis-

play:
* the upstream basin (area with flow toward the
seed point),
« the flow path downstream, and
« abuffer zone around the flow path.

If the user intends seed pointsto fall along astream
course, they can turn onthe Move Seed Point to Flow
Path toggle button. Each seed point is then moved
to the nearest precomputed flow path line beforethe
new flow path and basin are computed. The user
can place new seed pointsand repeat theanalysisas
many times as desired, and save the computed vec-
tor objects.

@B == H2/R|RSUUSRS QS N|E=

The script also creates and
displays (in red) a vector
layer outlining the extents of
the DEM. If an overlying
image layer is larger than the
DEM, the user can use the
extents box to guide
placement of the seed
points. The extents box is
also used to automatically
clip buffer zones computed
from flow paths that intersect
the DEM boundary.

More about the Flow Path tool script is available in an online document at

http://www.microimages.com/relnotes/v64/flowpath.pdf

page 53

Spatial Manipulation Language

Sample Tool Script: FRAGSTATS

The FRAGSTATS tool script (FRAGTOOL.SML) iS an
Once installed, a tool script | €xample of ascript that extracts spatial datafrom a
can be run from any view raster layer in the view and passesthe datato an ex-
window. Soyoucanrunthe | ternal application program for processing. The
Automatic Classification FRAGSTATS program was devel oped by |andscape

process and immediately run

the Fragstats tool script on ecologists to compute a variety of statistics about
part of the Class raster that | the spatial patterns of areas (patches) representing
is shown in the Classification | different ecological habitat classes. The appropriate
input for thetool isthere-
= Classification View fore a class raster, one

Vieu Tool LegendYieu Options Layer

View window.

= that has a unique integer

o 53 el P i value assigned to cellsof

o, £7° . = 4|l each category or class.

Ly ; & : You can create classras-

ters from multispectral

imagery using the Auto-

matic Classification or

Feature Mapping pro-
cessesin TNTmips.

The FRAGSTAT Stool script providesapolygon tool
A separate script for running | that lets the user select an area (created as atempo-
FRAGSTATS from the SML | rary region object) for calculating the landscape

process interface is also
available. ERAGSTAT SML statistics. Whenthetool isapplied, the script writes

can be found in your main the class raster to a text file for use by the
TNT directory under FRAGSTATS program. Cells outside the region of
/ Custom / General. This interest are given negative class values in the text

ipt ires that . L) -
;fgvpi dfgg'trhetsh e il ;’ssuraster file, whichisthe FRAGSTATS convention for iden-

and a binary mask raster to tifying cells that are outside the "landscape
define the area of interest. boundary”. The script then launches the
FRAGSTATS program in a DOS shell.
FRAGSTATS identifies homogeneous patches and
computes statisticsfor theindividual patchesand for
entire classes. The statistics are saved in a series of
text files.

More about the Fragstats tool script is available in an online document at

http://www.microimages.com/relnotes/v65/fragstats.pdf

page 54

Spatial Manipulation Language

Sample Tool Script: Command Parser

Several of thetool scripts discussed previously cre-
ate a control window that allows users to execute
script actions using push buttons or other graphical
interface controls. The Command Parser tool script
(comprar.smL) demonstrates a script design that cre-
atesa"command line" interface for executing script
actions. The Command Parser window created by
the script includes atext field in which the user en-
terspredefined text commands. A procedure named
ParseCommand() associates each com-
mand string with aparticular function %

Enter Command: |p,5,12

The Command Parser
window created by the script
includes a field for entering
command strings and one
that displays process status
messages. An icon button
opens a Help dialog window.

= Connand Parser

or procedure defined elsewhere in the

Status: IColor‘nap read

script.

This sample script was designed as a com-
mand-line equivalent to the graphical Color
Palette Editor in TNTmips. It allows auser
to create or edit a color palette by assigning
colors to particular cell values or cell value
rangesinaraster. Thescript usesavery small
set of commands (each one or two characters
long), some of which are accompanied by
numeric parameters. For example, the com-
mand string "pr,3,20,1" paintsarange of cell
values from 3 to 20 with the color specified
by color index number 1. The index hum-
bers and corresponding color values (R, G,
B, and Transparency values) aredefinedina &
text file, which for script accessmust beread ~ -
into an array using the command "b".

Although a graphical interface is easy to learn, ex-
perienced users can execute repetitive tasks more
quickly using acommand-lineinterface. Tasksthat
might require several mouse actions in a graphical
window can be executed using a single short com-
mand string.

Commands are included to
create a color text file from a
color palette in a project file,
or to create a color palette
from a text file.

More about the Command Parser tool script is available in an online document at

http://www.microimages.com/relnotes/v65/fixcolor.pdf

page 55

Advanced Software for Geospatial Analysis

S
M
L

Microl mages; Inc. publishes acomplete line of. professional 'software for advanced geospaiiial)
datavisualization, analysis, and-publishing. Contact us or visit our web site for detailed
product information.

TNTmips TNTmipsisaprofessional system for fully integrated GIS, image analysis, CAD,
TIN, desktop cartography, and geospatial database management.

TNTedit. TNTedit providesinteractive toolsto create, georeference, and edit vector, __
image, CAD, TIN, and relational database project-materialsin awide variety of formats.__.-

TNTview TNTview has the same powerful display featuresas TNTmipsand is perfect for
those who do not need the technical processing and preparation features of TNTmips.

TNTatlas TNTatlaslets you publish and distribute your spatial project'materials on CD-
ROM at low cost. TNTatlas CDs can be used on any popular computing platform.

NHUT—-—TTOW

TNTserver TNTserver letsyou publish TNTatlases on the Internet or on your intranet.
Navigate through geodata atlases with your web browser and the TNTclient Java applet.

TNTlite TNTIliteisafreeversion of TNTmips for students and professionals with small-<+.#
projects. You can download TNTlite from Microlmages web site, or you can order
TNTIlite on CD-ROM.

I ndex
KPPLI DAT. Macro Script

movie script

procedures......

raster objects.

region objects....

SML aYer....ooiiiiiiieeiee e 29
CUSEOM MENU....eiviiiiiiiiaeeeee e 17 TIN ObJECtS...ceviiiiiiiieiiie e 22
encryption.......... Tool Script
expressions toolbars.......
functions......... variables.........
GeoFormula.......coceuviiiiiiiiiiiiiee 30 vector Objects.......ccoeeiiririienins 20,21,26,27
including SCrptS......cocoveiiveeniieeiiee e 28 WIdgetS.....ooooeiiieiiiii 31-35

wps (for, for each, whil€)..........ccceurueunee. 15

Microlmages, Inc.

11th Floor — Sharp Tower
206 South 13th Street
Lincoln, Nebraska 68508-2010 USA

Voice: (402)477-9554 email: info@microimages.com
FAX: (402)477-9559 Interpet: Www.microimages.com

Sample SML Script
Extract Selected Polygons

The tiger.sml script extracts city boundaries from Tl- e
GER/ Linefilesthat have been imported into TNTmips. N o we e |
TIGER geodata is a digital map database used t0 SUp- [y r: oomnree I Ele] BIRIE] 2] setections |previes|

Path: C:\WINDOUSN\Desktop™TIGER.rve [Stanton Stanton Al
s Thayer Thayer

port the United States Census Bureau’'s census and sur- | Seacs free: 7.17 ca

s Thonas Thonas
. B adans ans
vey programs. TIGER / Line geodata has a standard Eﬁﬂtelm Pt 1oms B Qo I
Hrl—hu" Ord b

vector and attribute database format that is the same Eg' To extract city boundaries from TIGER files:

H H : H , 1. From TNTmips main menu click: Process / SML / Run...
for each of the 3142 counties in the USA. This script ||[&n o (00 o o o it tiger omi

can be apphed to any county TIGER file to extract and F_f 3. Input Tigers: select any number of TIGER vector objects
create a vector object containing only city boundary |osiects of tupe: _vecter |

polygons and an attribute table of city names. All the |28 H3HI= s overvie]

extensive additional graphical and tabular datain these L | AddATeony T
filesis excluded from the new vector object. Thismuch ===

smaller, special purpose vector object requires less storage and is significantly faster when used in a

display, to build an index, or to search.

This SML script demonstrates how to extract specified elements from vector objects based on attribute
information. Thistype of script is useful for imported vector objects such as DLG and TIGER data that
use standard tables, table relationships, and methods to attach attributes to elements that are duplicated
in thousands of files (where each file represents a different geographic location) as a way to store and
organize massive amounts of geodata. Many times it is impractical to view and/or use information
directly from these large files because they map many different features with vast amounts of attribute
information. Using all this data at once slows down the computer and takes focus away from the infor-
mation you want to convey. For instance, a well-designed electronic atlas requires that you use only
relevant geodata not only to get the best processing speed but also for design clarity. The knowledge of
how to create this type of script makes it possible to extract only the data that is specifically relevant to
your needs. Furthermore, you have the ability to split a complicated vector Obj ect into multiple inde-
pendent objects that can be used separately. '

Input: 93 TIGER vector objects with
Finally, since you can use any number of 1860 database tables for line attributes
vector objects as input, the script shows a | : !
fast way to obtain analogous elements and ———— Result: 1 city boundary vector /

attribute information from multiple files. object with three database tables

(polygon labels are turned on) Herdvile | Palk
Inthis exanple, 93 separate TTGR/
Line vector objects for each of the 93 o
counties in the state of Nebraska
(660 M), each with 20 database G
tables inthe line & enents dat abase, ida Adrara
were used as input far the tiger.snh
script. In10mnuesthescript created e Giltreer Hendgrson
1 vector oject (668 Ko that has city
boundary pol ygon el enents for the
wadestaewththree atribue tad es: Tl
Gty Nanes, Polygon ID, and Haniard
POLYSTATS iata Hastings

Ch
Bl Mlarquette

Harnpton Bradshaw

Stockham Lushton

Graton
% aronill&ten

Microl mages, INnc. (402)477-9554 « FAX (402)477-9559 « 206 S. 13th Street, Lincoln, Nebraska 68508-2010 USA « info@microimages.com « April 2001

Sample scripts have been prepared to illustrate how you might use the features of TNTmips’ Spatial Manipulation
Language (SML). If possible, the full script is printed below for your quick perusal. When a script is too long to fit on
one page, key sections are reproduced below. The sample script illustrated can be downloaded from the SML script
exchange at www.microimages.com/sml/ftpsmllink/TNT_Products_V6.5_CD.

Script for City Polygons (tiger.sml)

clear () ;
numInputs = GetInputVectorList (Inputlist,

Input Tigers”); Open Select Objects window and

get input TIGER vector objects

if (numInputs <= 0) return;

Creates Output vector object with same
Georeference as 1st input vector
GetOutputVector (Output, “VectorToolkit,Polygonal”) ;
CopySubobjects (InputList([1],Output, "GEOREF") ;

Array xarray[l];

Array vyarray[l];

numeric numpolys;

numpolys = 1;

Array records[l];

numeric numberofthem;
fieldname$ = “City Names”;

Create database for polygon element with
CITY_NAMES table / CITY_NAMES field

db = OpenVectorPolyDatabase (Output) ;

tinfo = TableCreate(db, "“CITY NAMES”,
SML script”);

tinfo.OneRecordPerElement = 1;

TableAddFieldString (Output.poly.CITY NAMES,
fieldname$, 40);

“Created by

‘ For every input vector... ‘

for i = 1 to numInputs {
SetStatusMessage (sprintf (“Processing vector %
of %d\n”,1i,numInputs));

Open Geo_Names_P table in input object ‘

linedb = OpenVectorLineDatabase (InputList([i]);

if (TableExists(linedb, "“Geo Names P”) > 0) {
linevar = TableOpen (linedb,”Geo Names P”);
linetable = TableGetInfo(linevar);

numLines = NumVectorLines (InputList[i]);
for 3 = 1 to numlLines {

For every line in vector...

SetStatusBar (j,numLines) ;

left = (InputList[i].line[j].Basic Data.
FIPS Pub55Pla L);
right = (InputList[i].line[Jj].Basic_ Data.

If the addition of a line creates a polygon (there are more polygons
in output vector than there were in last iteration), then add attribute
record to CITY_NAMES table for polygon element

if (NumVectorPolys (Output) >= numpolys) {
numberofthem= TableReadAttachment (linetable,

j,records) ;

string$ = TableReadFieldStr (linetable,
"Geographic Name”,records([1l]);

Get city name from Geographic_Name field ‘

TableNewRecord (tinfo
‘Add new record to table ‘

recordnumber =
,string$) ;

records[l] = recordnumber;

numberofthem = TableWriteAttachment (tinfo
snumpolys, records, 1); ‘ Attach record to element‘
numpolys =\numpolys + 1;
}
} Polygon element
} ID number

Array islands|[1];

numeric size;

size = 100;

Array deleteisland[sizel];
numeric numofislands;
numeric k;

k = 1;

Delete island polygons and attached records

FIPS P Pla R); — -
S_Pub55Pla_R) If line is a city boudary...

(InTIGER data, if the left and right
side of a line have different
attributes then the line is a city
boundary.)

if (left != right) {

numPoints =

GetVectorLinePointList (InputlList([i],
xarray,yarray,) ;

‘ Get list of points in line ‘

VectorAddLine (Output, numPoints,
xarray,yarray) ;

‘ Add line to output vector ‘

for each poly[i] in Output {
numofislands = GetVectorPolyIslandList (Output,
islands) ;
if (numofislands > 0) {

for j = 1 to numofislands {
TableReadAttachment (tinfo,islands (7],
records) ;
RecordDelete (tinfo, records[1l]);
deleteisland[k] = dislands([j];

k += 1;
if (k >= size) {
ResizeArrayPreserve (deleteisland,size+100)
size += 100;
}
}
}
}
if (k > 1)

VectorDeletePolys (Output,deleteisland, k-1);

print (“The number of deleted

was”,k-1);

island polygons

SetStatusBar (0,10);

VectorValidate (Output) ;

Microl mages, | nc. (402)477-9554 « FAX (402)477-9559 « 206 S. 13th Street, Lincoln, Nebraska 68508-2010 USA « info@microimages.com « April 2001

Sample SML Script

Farm to Market Routing .. 2

Zealand
TNTmipsincludes a Network Analysis process that determines the “best” route between points that fall /‘4‘&@’5; o
along aset of lines or the allocation of lines for the most efficient use in delivery to or transportation 4 sample
from aset of centers. In either case, the stops along the route or the centers must fall ontheline data area
network (the process automatically chooses the nearest node when you indicate the location
of astop or center). But what do you do when your points, in this case farm gates and process- { 3
ing plants, are not actually on the roads? Use an SML script like the one described here.
Stroup 1 ~ Group ¥iew 1 CEE This script uses three vector objects: one to provide the road net-
T Tl Leeme T oror — =¢ | work, one with farm gate locations, and one with processing plant
?@M%Itflail?ml@lammn Uk =/ sl @l locations. You can substitute any widely distributed product location
— i for thefarm gatesand any central location to which the product would
— ';‘3“ & : be delivered for the processing plants. The difficulty in this particu-
. lar case is that the datais not suitable for direct use in the Network
B8 oo Analysis process because, even if merged into asingle vector object,
e the points do not fall on the roads (you may have to zoom in quite a
way for it to be evident, see inset at left). The problem data was
3 provided by AgriQuality New Zealand (formerly part of the Minis-
try of Agriculture and Forestry). Thisscript uses only the distance
from the processing plants to calculate impedance, but you can
7 =w* | include a variety of other factors, such as road conditions, speed
= limits, and the price offered at each processing plant. You can readily
change the market components of the impedance on adaily basisif
i 1l need bewith the end result of adynamic appraisal of the best market
R e TN P | =1 for delivery of your product today.

The script adds anode to the roabs object at the closest point on the
closest linefor each of the pointsin the rarms object. 1t keepstrack of these added nodesin an array that associates them with
the correct farm. Nodes are similarly added for each of the processing plants. The shortest distance between each farm and
processing plant is calculated using network analysis functions. This script adds two new tablesto the point database of the
FARMS Vector object: one with records attached to each point that list the distance to each of the processing plants and another
that provides the geographic coordinates of each processing plant in [EEESETEEE

the same coordinate system used by the rarms object. The roabs i = SEEelelaleEs Al FAER

Help

vector ends up with many new nodes (equal to the number of farms | reat_panta
and processing plants) that are not required for topology. These nodes i
can easily be removed by filtering the vector (use the Remove Ex- 2

cess Nodes filter) if desired.

The script attaches multiple records to each farm gate point—one | . -
for each processing plant. Such multiple attachments mean you can-
not simply style by attribute because the first record at-
tached to every point reports the distance to the first pro-
cessing plant. In order to style each point according to l
which processing plant is closest or can be reached with |8 : lgj;ﬁﬁﬁ
the least impedance, you need to style by script using a |52 : i
script designed to evaluate all attached records. ThesCript [For e records shou =5 gotaei

used to style the results shown here is included on the back of this disi:ance b5
In KM

Net_Dist

page along with the script that determines the distance to each of the ; L OO T

S — = — & 2| 2777799,841738| 6035785,179093 _I

prOC ng p| ants. View:| 1.0 Scale:| 2492011 ﬁ [+ } | 3| 2729745.371010| 6104406, 245569 |./
~d 1

Microl mages, | nc. (402)477-9554 « FAX (402)477-9559 « 206 S. 13th Street, Lincoln, Nebraska 68508-2010 USA « info@microimages.com « April 2001

Sample scripts have been prepared to illustrate how you might use the features of TNTmips’ Spatial Manipulation
Language (SML). If possible, the full script is printed below for your quick perusal. When a script is too long to fit on
one page, key sections are reproduced below. The sample script illustrated can be downloaded from the SML script
exchange at www.microimages.com/sml/ftpsmllink/TNT_Products_V6.5_CD.

Script for Market Routes (network.sml)

clear(); #clear console

GetlnputVector(Farms); #this vector is modified since tables are written to it
GetlnputVector(Plants);
GetlnputVector(TempNetwork); #this vector is modified by adding nodes

prompts for
input vectors

VectorToolkitl nit(TempNetwork,” NoDBStatTable”);
VectorToolkitlnit(Farms);

numeric numPoints;
numeric numrFarms;
numeric numPlants;
numeric numLines;
numerici;

variable

Array xarray[1]; declarations

Array yarray[1];

numFarms = NumVectorPoints(Farms);
Array farms[numFarms];

numeric linenumber;

numeric tempx;

numeric tempy;

numeric a;

numeric b;

numeric distance;

gets georeference

farmgeo = GetL astUsedGeoref Object(Farms); for f d d
Oor farms and roads

tempgeo = GetL astUsedGeorefObject(TempNetwork);

printf(“ The number of farmsis %d\n” ,numFarms);

for i=1 to numFarms {
SetStatusM essage(sprintf(“ Processing point %d of %d of farms”,i,numFarms));
tempx = Farms.point[i].Internal .x;

numLines = NumVectorLines(TempNetwork);

for i=1 to numLines{
imp = (TempNetwork.line[i].LINESTATS.Length);
NetworkLineSetl mpedance(net,i,imp,’ FromTo");
NetworkLineSetl mpedance(net,i,imp,” ToFrom”);
}

total = numFarms* numPlants;
numeric count;

count =1;

string tablenames;

class DATABASE db;

class DBTABLEINFO tinfo;

sets network
impedance to
line length

db = OpenVectorPointDatabase(Farms);
numeric recordnumber;

Array records[1];

numeric distance;

tinfo = TableCreate(db,” Plant_Num”," Created by SML script”);
TableAddFieldinteger(tinfo,” Plant”,3);
TableAddFieldFloat(tinfo,” xcoord" ,25,6);
TableAddFieldFloat(tinfo,” ycoord”,25,6);

for j=1 to numPlants {

creates table that
reports plant
locations in same
coordinate

tempgf = Farsr(r;spoint[i]-lnternal Yi) finds closest point
Georef Trans(farmgeo,tempx,tempy,tempgeo,tempx,tempy); H
linenumber = FindClosestLine(TempNetwork,tempx,tempy); on closest line to
ClosestPointOnLine(TempNetwork,linenumber,tempx,tempy,a,b); farm gate and
VectorAddNode(TempNetwork,a,b,1); adds a node
farmg[i] = FindClosestNode(TempNetwork,a,b);

} creates array of all
numPlants = NumVectorPoints(Plants); added nodes and
Array plants{numPlants]; corresponding farms

plantgeo = GetL astUsedGeorefObject(Plants);
printf(“ The number of plantsis %d\n” ,numPlants);

for i=1 to numPlants {
SetStatusM essage(sprintf(“ Processing point %d of %d of plants’,i,numPlants));

tempx = Plants.point[i].Internal .x;

tempy = Plants.point[i].Internal.y;

Georef Trans(plantgeo,tempx,tempy,tempgeo,tempx,tempy);
linenumber = FindClosestLine(TempNetwork,tempx,tempy);
ClosestPointOnL ine(TempNetwork,linenumber,tempx,tempy,a,b);
VectorAddNode(TempNetwork,a,b,1);

finds closest point
on closest line to
processing plant
and adds a node

plantd[i] = FindClosestNode(TempNetwork,a,b);
}

VectorUpdateStdA ttributes(TempNetwork);
CloseVector(TempNetwork); #flush vector

updates standard attributes
and closes modified vector
object (road network)

class Network net;

class Route route;
classMultiRoute multiroute;
numeric imp;

net =

Networkinit(GetObjectiHleName(TenpiNetwork) GetOhjetName(GetObjectiHleName(TenpiNetwork) GetObjesNurber(TampNewark)));
NetworkSetDefaul tAttributes(net);

tempx = Plants.point[j].Internal .x;
tempy = Plants.point[j].Internal.y;
Georef Trans(plantgeo,tempx, tempy,tempgeo,tempx,tempy);
recordnumber = TableNewRecord(tinfo,j,tempx,tempy);
records| 1] = recordnumber;
TableWriteAttachment(tinfo,i,records,1);

}

tablename$ = “Plant_Dist”;

tinfo = TableCreate(db,tablenames$,” Created by SML Script”);
TableAddFieldinteger(tinfo,” Plant”,3);

class DBFIELDINFO the_field;

the_field = TableAddFieldFloat(tinfo,” Net_Dist",25,6);
the_field.UnitType = “Distance”;
the_field.Units=“kilometers’;

system as farms

creates table and
field with km
distance units

for j=1 to numPlants {

printf(“Plant %d\n” j);
SetStatusM essage(sprintf(“ Calculating all routes from plant %d of %d” j,numPlants));
NetworkCal cul ateM ulti Route(net, plants]j] ,farms,numFarms,multiroute);

for i=1 to numFarms {

SetStatusM essage(sprintf(“ Cal cul ating route %d of %d" ,count,total));
count +=1;

calculates printf(“Route from plant %d to farm %d\n” j,i);
distance of best
route from each
farm to each
processing plant
and adds to record
attached to farm in

distance table

NetworkM ulti RouteGetRoute(multiroute,farmgli] route);
report$ = NetworkRouteGetReport(route);

distance = StrToNum(GetToken(report$, “ “,18));

recordnumber = TableNewRecord(tinfo,j,distance/1000); #m/1000 = km
records{ 1] = recordnumber;

TableWriteAttachment(tinfo,i,records,1);

NetworkRouteClose(route);

}
NetworkM ulti RouteClose(multiroute);
}

NetworkClose(net);
CloseVector(Farms);
CloseVector(TempNetwork);
CloseVector(Plants);

printf(“ Script Ran to Completion”);

Script for Styling by Closest Plant

val = Plant_Dist[1].Net_Dist
id = Plant_Dist{1].Plant

finds processing
plant with lowest
distance value

for i =2 to SetNum(Plant_Dist[*]) {
if (Plant_Dist[i].Net_Dist < val) {
val = Plant_Dist[i].Net_Dist;
id = Plant_Dist[i].Plant;
}
}

if (id==1) - .
Style$ = “Stylel” else assigns drawing

if (id==2) style according to
Style$ = “Style2” else . igr
Style$ = “Style3" plant identified as

UseStyle= 1 closest

Microl mages, | nc. (402)477-9554 « FAX (402)477-9559 « 206 S. 13th Street, Lincoln, Nebraska 68508-2010 USA « info@microimages.com « April 2001

Sample SML Scripts

DIRECTOR

The Spatial Manipulation Lan-
guage (SML) now puts you in the
director’s chair. Using new movie
generation SML functions in
TNTmips 6.50 you can create scripts that set up
and record custom animations of your geospatial
data. You can record these animations in either
MPEG format (any computer platform) or AVI for-
mat (Windows computers only) and set both
frame rate and recording time. Microlmages has
prepared a number of sample movie generation
scripts, one of which is excerpted on the reverse
side of this page. Although these movie genera-
tion scripts were prepared after the TNTmips 6.50
Products CD was mastered, you can download
any of the scripts as well as sample movie files
from the Downloads page of the Microlmages
web site:
www.microimages.com/freestuf/.

The 30 new SML functions and class methods
that implement movie generation incorporate
many of the capabilities of the 3D Simulation pro-
cess in TNTmips. But they also give you more
control over the 3D viewing parameters. You can
specify viewer position and view
direction independently, so that the

&i PATHcHT2.avi - Windows Media Player
File Wiew Play Faworites Go Upgrade Help

elements of the path, orbit, and pan modes of the
3D Simulation process.

But animations are not limited to 3D simulations.
An animation merely consists of a gradually vary-
ing series of static frames. Each frame is rendered
from one or more View windows created by the
script and then copied into the output MPEG or
AVTIfile. The movie therefore can record any se-
quential change in the view windows used to
create the frames.

A simple example would be a sequence of 2D
views showing a change in some mapped param-
eter through time. The script can sequentially
add and then remove a series of pre-prepared lay-
ers to and from the view, or modify the display
parameters for a single continuing layer (such as
a set of vector polygons with attached attributes)
to create the change from frame to frame. More
complex examples might sequentially display the
result of some process computed in the script,
such as a series of viewsheds computed for dif-
ferent positions along a traverse line through a
terrain model. The possibilities are limited only
by your source data and your imagination!

3D view can look ahead along the
flight path (as in the standard 3D
Simulation process), or to the side,
straight down, or backward along
the flight path. You can create a
single 3D movie that incorporates

Ei mshorb.avi - Windowes Media Player
File Wiew Flay Favortes Go Upgrade Help

Mount St. Helens Flow Hazard Zonation
and Survey Station Locations

¢ Mountains,

! i
LSTTEN TR -

In a 3D simulation script you can render both 2D and 3D views into each frame, as
shown in the above illustration. After each frame is captured you can also draw
symbols into it marking the current viewer position and view center position, and
draw a trail of previous position symbols behind the moving symbol. Sample 3D
simulation scripts are available to show how to script these features, and to set
up panning, a spiral orbit, and contant-altitude and constant-height flight paths.

Movie Generation Scripts

=VIEH 20

[Pennsylvania Populetion Density Y1836

The main processing loop of any
movie script must perform three major
functions:

1. Change the content of one or more
view windows and redraw. This
step might involve altering the
viewing parameters for a 3D view,
or adding new layers or updating
existing layers in a 2D view.

2. Copy the contents of the view
window(s) to a frame. Additional
graphic symbols or annotation text
can be drawn directly into the
frame if you wish.

3. Copy the frame to the output movie
file.

New functions in the Frame and Movie function groups
are used to set up the generic frame and movie param-
eters, capture the View window contents to a frame, and
copy the frame to the output AVI or MPEG file. For 3D
animations, new class methods in the VIEWPOINT3D
class are used to manipulate the settings for the 3D view.
You can set viewer and view center position coordinates
explicitly for each frame, or move either position a speci-
fied distance or direction relative to the previous position.
Either position can be rotated around the other. You can
also set either position and then use an azimuth angle,
elevation angle, and distance to define the other.

Microlmages, Inc. (402)477-9554 « FAX (402)477-9559 » 206 S. 13th Street, Lincoln, Nebraska 68508-2010 USA « info@microimages.com * May 2001

Sample scripts have been prepared to illustrate how you might use the new features of TNTmips’ Spatial Manipulation
Language (SML). Key sections of one script are reproduced below for your quick perusal. The entire script can be
downloaded from the SML script exchange at www.microimages.com/sml/ftpsmllink/TNT_Products V6.5 CD.

Excerpts from Constant Height Flight Path Script (PATHcHT2.sml)

string fornat$;

: string ext$; "
format$ = "AVI"; Set movie format, frame ext$ = MbvieGet Fi | eExt (movie); Make output file

rate, and recording time string filenane$;
string franerate$; filename$ = GetCQutputFileName(“”,”Make filenane for novie’,ext$);
framerate$ = “MOVI E_FRAMERATE_24";
if (time <= 1.0) time = 1.0; Check recording time and
nuneric tinme;
time = 60: nunFrames = time * rate: calculate number of frames
Select input DEM for surface, raster et ;
Get | nput Rast er (Sur f ace) ; : class Ceoref georefS; e eoreference
Get | nput Rast er (Rast Dr ape) ; drape_’ ,and two vector ObJeCtS georef S = GetlLast UsedGeor ef Obj ect (Surf ace) ; paragmeters for lavers
Get | nput Vect or (FI i ght Pat hvec); | containing ground traces of Geor ef Set Proj ecti on(georef S, group. Proj ection); Y
Get | nput Vect or (Vi ewCent er Vec) ; |flight path and view center path and reset to group
class Georef georefFlight; projection
string styleFilenane$; georef Fli ght = GetlLastUsedGeoref Obj ect (Fl i ght Pat hVec) defined b
string styleObjectnane$; Geor ef Set Proj ecti on(georef Fl i ght, group. Proj ection); y
Get I nput Obj ect (“Style”,”Select style object for center and viewer raster drape
point synbols:”, styleFilename$, styleObjectnane$) class Ceoref georefCent; |ayer
string viewer$; " — georef Cent = GetLast UsedGeor ef Obj ect (Vi ewCent er Vec) ;
viewer$ = “VIEVER'; Select style object containing Geor ef Set Proj ecti on(geor ef Cent, gr oup. Proj ecti on);
PRSI S point symbol styles for viewer : _————Section computing arrays of viewer
position and view center position Start recording mowe| and center positions from input vectors
print(“START"); Movi eStart (novie, fil enanes); is omitted here; see script
. . Variables to set size of 2D and 3D view S
nuneric size; N . for i = 1 to nunfFrames { -
size = 320 ’7 windows and zoom-out factor for 2D view class POINT3D fpt; \| Begin loop for each frame|
fpt.x = xarrayf_eq[i];
nuneric zoonfactor; fpt.y = yarrayf_eq[i];
zoonfactor = 1.0; Create display group. Create flag to create fpt.z = zarrayf_eq[i]; |Set viewer position along flight path |
ol ass oroup: view without iconbar, scrollbars, status line, vp. Set Vi ewer Posi tion(fpt);
group = GroupCr eat e(): and scale/position line; important to maintain class POINT3D cpt; Set view center oosition
fixed window size during movie generation cpt.x = xarrayc_eq[i]; | view posit |
string flags$; cpt.y = yarrayc_eq[i];
flags$ = “NoScal ePosLi ne, Nol conBar, NoScr ol | bars, NoSt at usLi ne”; cpt.z = zarrayc_eq[il];
class XaForm di al oq2d: vp. Set Center (cpt); /lRedraw both views Copy both
g2d; " "
class VI EW vi ew2d; Create dialog and 2D view Vi ewRedr aw(vi ewdd) ; views to frame
di al og2d = CreateFornDi al og(“VIEW 2D");
view2d = G oupCreateView group,dial og2d,””, size, si ze, fl ags$); FrameCopyFronVi ew(f rame, vi ew2d, 0, 0, si ze, si ze, x2d, y2d) ;
vi ew2d. BackgroundCol or.red = 67; FrameCopyFronVi ew(f rame, vi ew3d, 0, 0, si ze, si ze, x3d, y3d) ;
vi ew2d. BackgroundCol or. green = 100;
vi ew2d. BackgroundCol or. bl ue = 100; for j =1to (i - 1) { -

. . Set Col or (col orc) Loop to draw previous
class XnForm di al og3d; Create dlalog and 3D view FillCircle(xarraycs[j],yarraycs[j],2) |center points in frame
class VIEWBD vi ew3d; }

di al og3d = CreateFornDial og(“VIEW 3D");
viewdd = G oupCreate3DView group,dial og3d,””, size, size, flags$); class PO NT2D point; —
vi ewdd. BackgroundCol or.red = 67; point.x = vp.CenterPoint.Xx; Draw current center point in frame
vi ewdd. BackgroundCol or. green = 100; point.y = vp.CenterPoint.y;
vi ew3d. Backgr oundCol or. bl ue = 100; point =
Add surface and TransPoi nt 2D(poi nt, Vi ewGet TransMapToVi ew(vi ew2d, gr oup. Proj ection));
GroupQui ckAddRast er Var (gr oup, Sur f ace, 1) ; poi nt = TransPoi nt 2D(poi nt, Vi ewGet Tr ansVi ewToScr een(vi ew2d)) ;
Gr oupQui ckAddRast er Var (gr oup, Rast Dr ape, 0) ; raster drape to group Dr awSet Poi nt Styl e(center$);

Dr awPoi nt (poi nt . x, poi nt. y); -
awPoi nt (poi nt. x, poi nt..y) Update arrays of previous

Di al ogOpen(di al og2d); . X
xarraycs[i] = point.x; __——_|center point coordinates

Di al ogOpen(di al 0g3d) Open both views

yarraycs[i] point.y;
Vi ewRedr awful | (vi ew2d) ;
Vi ewRedr awFul | (vi ewdd); ; for j =1to (i - 1) { Loop to draw
Vi ewZoomQut (vi ew2d, zoonf actor, 1); Full redraw of both views Set Col or (col orf) i i
N " . . previous viewer
FillCircle(xarrayfs[j],yarrayfs[j],2) ", .
x2d = 0 } positions in frame
y2d = 0; Parameters to set location and
x3d = size; H ; H : point.x = vp.ViewPos. X; - - -
y3d = o size of each view in movie frame boint y = vp.ViewPos. v. Draw current viewer position in frame
w = 2 * size; point =
h = size; TransPoi nt 2D(poi nt, Vi ewGet TransMapToVi ew(vi ew2d, gr oup. Proj ection));
Set fontsi for text tati in f point = TransPoi nt 2D(poi nt, Vi ewGet Tr ansVi ewToScr een(vi ew2d)) ;
nuneric fontsize; €t rontsize Tor text annotation In irame | Dr awSet Poi nt Styl e(vi ewer $) ;
fontsize = 16; Dr awPoi nt (poi nt. x, point.y); Update arrays of previous
class Frame frane; |Create blank frame | xarrayfs[i] = point.x; __— | viewer position coordinates
frame = FrameCreate(w, h); yarrayfs[i] = point.y;
Act i vat eGC(Fr ameCr eat eGC(f r ame)) ; |Create graphics context for frame Dr awText Set Col or s(bl ack) ;
Dr awText Set Hei ght Pi xel s(fontsi ze); Dr awText Si npl e(“Muddy Mountains, NV',2,fontsize); Draw text
DrawUseSt yl eCbj ect (styl eFi | ename$, styl eCbj ect names) ; Dr awText Set Col ors(col orc); annotation
DrawText Si npl e(“View center path”,2,fontsize*2. 1); in frame
class Mvie novie; Dr awText Set Col ors(col orf);
movie = Movielnit(); niualize movie DrawText Si npl e(“Flight path”, 2, fontsize*3. 3);
Movi eSet For mat (novi e, f or mat $) ; Movi eAddFr ame(movi e, frane) ; |Add frame to movie|
Movi eSet Fr ameRat e(novi e, framer at e$) ; |Set more movie parameters| }
Movi eSet Framew dt h(movi e, w) ; End of loop recording frames
Movi eSet Fr ameHei ght (novi e, h); Movi eSt op(novi e) ; | p 9

Movi eExi t (novi e) ;
Di al ogCl ose(di al og2d);
Di al ogCl ose(di al 0og3d);

|Stop and exit movie, close dialogs|

Microlmages, Inc. (402)477-9554 « FAX (402)477-9559 « 206 S. 13th Street, Lincoln, Nebraska 68508-2010 USA « info@microimages.com * May 2001

Macro Script Setup

Macro scripts and tool scripts add a powerful new way to use Spatia
Manipulation Language (SML) inyour TNT products. To add amacro
script so it can be run from anicon on the View window toolbar, choose
Options / Customize / Macro Scripts from the View window in the
Display process or any other process with a View window. Making
| this selection opens the Customize Macro Scripts window.

Click on New if your
i script is not yet written
| or click on Add if you
already have a script
(Process/ SML / Edit Script). Clicking on New opens the Query Editor window,
whichisused to prepare/ edit SML scripts. A few predefined symbolsthat may be = | o | el |
of use appear as comments when the Query Editor opens. The same features avail-
ablefor script construction in the SML process are available here. You are prompted to save your script when you click on OK in
the Query Editor. Once the script is saved, the Macro Script Properties window opens. Clicking on Add opens the Select File
window so you can locate the script you want to use. Only *.sml files are listed by default—you need to change the Files of Type
option to all if your script has a different file extension or has been saved as an RVC object. Once the script is located and you
click OK, the Macro Script Properties window opens.

Add \ Edit \Delete
New

Properties

I =

The Macro Script Properties window lets you choose an icon, indicate whether the
script is for a simple button or a menu button, set up the Tool Tip, enter menu itemsif a
menu button is used, and test your script. Clicking on the Icon button opens the Select
Icon window so you can choose a different icon from the more than 700 icons in this
size available with TNTmips. The Type option menu offers two choices. Simple But-
ton and Menu button. A simple button automatically executes its script without further
14 input from the user. A menu button drops down a list of choices that determine the
outcome of running the script. 1f Menu Button is chosen in the Macro Script Properties
o | et | Baiee.] g | wese || Window, the Menu Choices text field becomes active so you can enter the menu choices
you want available when you click on the Macro Script icon on the View toolbar. Each
linein the Menu Choices field represents a separate menu choice. Enter the Tool Tip you want directly in the Tool Tip field. This
Tool Tip will appear when the cursor is paused over the Macro Script icon in the View window. The Test button at the bottom of
the window lets you run your script without closing the customize windows. |f the script uses a menu button, the menu choice
with2 the text cursor isthe option chosen. If the script does not perform exactly as anticipated, the Edit button at the bottom of the
window opens the Query Editor containing the script so you can make modifications.

Click OK in the Macro Script Properties and Customize Macro Scripts windows when you are done adding, developing, and/or
testing your script. Return to the Customize Macro Scripts window anytime to add or delete scripts, or open the Macro Script
Properties window (click on Propertiesicon in Customize Macro Scripts window) to change the icon, Tool Tip, or menu choices.

Microlmages, I nc. (402)477-9554 « FAX (402)477-9559 « 206 S. 13th Street, Lincoln, Nebraska 68508-2010 USA « info@microimages.com « October 2000

Sample SML Macro Script

Zoom to Specified Map Scale

The Zoom to Scale macro script lets you specify a number of different map g

scales or ground dimensions to use to adjust the display scale. When you

pick the desired scale from the drop-down menu on the Zoom to Scale script

icon, the contents of the View window are redrawn at the indicated scale. If

@ the scale is specified

= L";;ﬂ:@"a'm """'" in ground dimen-
L

BB D 2

sions, for example 1

mile or 10 miles,
Do .
1m | Youget thespecified

distance plus 10% for _ . .

he smallest window This option menu lets you _des!gnate
t_ ; whether your macro script is de-
dimension. (For ex- signed for a simple button (push the
ample, if you choose button and the macro script is ex-
10 miles and the win- ecuted) or a menu button. In order
dow iswider thanitis for a macro script to provide choices,
Al 11 milesisvisib you must indicate you want the icon
F LM _eS|S\{IS' e to be a menu button. You can then
inthevertical dimen- ype in the menu choices you want.
e T sion of the window.)

In order for the Zoom to Scale script to work as designed, [
the objects displayed must either be georeferenced or scale

calibrated. In order for map scale displays to be accurate, |“HEHEE
you also need to have set up your screen width and height
on the MI/X panel for General System Preferences (Sup- £
port / Setup / Preferences).

This particular script accepts two kinds of scale input, map
scale and miles. If the menu choiceis purely numeric, itis
taken as a designated map scale. If the menu choice con- &
sistsof anumber, aspace, and any other character, itistaken [
as adesignated ground distance in miles. '

Each time you select from the Zoom to Scale icon menu,
the scaleis adjusted while maintaining the same view cen-
ter if possible (if you are zooming out and are near the edge
of the displayed objects, the view will be recentered).

Remember when working with map scale that a smaller
entered number means things appear larger. For example,
the dimensions of a park or other area of interest will be
twice aslarge at 1:12000 asthey are at 1:24000, which are
represented by menu choices of 12000 and 24000, respec-
tively.

Microlmages, I nc. (402)477-9554 « FAX (402)477-9559 « 206 S. 13th Street, Lincoln, Nebraska 68508-2010 USA « info@microimages.com « October 2000

Macro and Tool Scripts can be created using SML in any TNTmips process that uses a View window (Options /
Customize from the View window menu bar). These scripts are then available from an icon, which you select or
design, on the toolbar. Sample scripts have been prepared to illustrate how you might use these features, which are
available only in TNTmips 6.4 or later, to assist with specific tasks you perform on a regular basis. If possible, the full
script is printed below for your quick perusal. When a script is too long to fit on one page, key sections are repro-
duced below. All sample Tool and Macro Scripts illustrated can be found in their entirety on your TNT products CD-
ROM in the directory where your TNT products are installed. These scripts, among others, can be downloaded from
the SML script exchange at www.microimages.com/smli/ftpsmllink/TNT_Products_V6.4_CD.

Script for Zoom to Scale (zoomto.sml)

if (NumberTokens(MenuChoice$,” “) == 1) {
ViewSetM apScal e(View, StrToNum(MenuChoice$));
}
elseif (NumberTokens(MenuChoice$,” “) == 2) {
widthmeters = View.PixelSizeMillimeters * View.Width / 1000;
heightmeters = View.Pixel SizeMillimeters * View.Height / 1000;
if (widthmeters < heightmeters) {
mindim = widthmeters;

}

mindim = heightmeters;
}
newdim = StrToNum(GetToken(MenuChoice$,” “,1)) * GetUnitConvDist(“miles’,” meters’);
newscale = newdim/ mindim * 1.1,
ViewSetM apScale(View,newscale);
}

else{

You could change this script to zoom to entered
kilometer dimensions, rather than miles, by changing
the word miles to kilometers here.

Microl mages, I nc. (402)477-9554 « FAX (402)477-9559 « 206 S. 13th Street, Lincoln, Nebraska 68508-2010 USA « info@microimages.com « October 2000

Tool Script Templates

macro script icon iy 100l scripts and macro scripts add a powerful new way to use Spatial
Manipulation Language (SML) in your TNT products. To add atool
script to run from an icon on the View window toolbar, choose Op-
tions/ Customize/ Tool Scriptsfrom the View window in the Display
process or any other process with aView window. Making this selec-
tion opens the Customize Tool Scripts window. Tool Script icons ap-
pear to the left of any Macro Script icons on the View window tool bar.

Click on New if your

script is not yet written |+ 'ﬂ\:'fl\
or click on Add if you NAdd Edit | Delete
or someone else has alreadly written the script (Process/ SML / Edit Script). Clicking || Properties
on New opens the Query Editor window, which is used to prepare / edit SML =
scripts. The same predefined symbols provided for macro scripts appear as com-
ments when the Query Editor opens. Additionally, a number of predefined values =] =] o |

(such as number PointerX, which provides the pointer X coordinate within the view in pixels) and functions likely to be used in
a Tool Script are provided as a template for your custom script. The template includes functions used the first time a tool is
activated; when the tool is destroyed; when the tool is acti-
vated and deactivated; when the tool is suspended (during
redraw) and resumed (after redraw); when the left, right, or
middle mouse button is pressed or relesed; when the cursor
moves without a button press; when the cursor moves with a
button press; when the cursor enters or leaves the View win-
dow; and when the user presses a key. If you want to use
7 = | thesefunctionsin your script, uncomment the lines (remove

4 the leftmost #) and add function code between the lines as
needed. The same features available for script constructioninthe SML process are available here. You are prompted to save your
script when you click on OK in the Query Editor. Once the script is saved, the Tool Script Properties window opens.

The Customize Tool Scriptswindow has exactly the same buttons and functions as the Customize Macro Scripts window (see the
Macro Script Setup color plate). If you choose to add an existing script, once the script is located and you click OK, the Tool
Script Properties window opens. The Tool Script Properties window lacks some of the features of the Macro Script Properties
window—you choose an icon and set up the Tool Tip, but there is no Type option button and
consequently no Menu Choices panel. The Test button is not available for tool scripts. You
need to test the tool from the View window itself once the tool is added.

Click OK in both the Tool Script Properties and Customize Tool Scripts windows when you are
done adding your script. You can aways return to the Customize Tool Scriptswindow (Options
/ Customize / Tool Scripts) to add or delete scripts, or open the Tool Script Properties window (click on the Propertiesicon in
Customize Tool Scripts window) to change the icon or Tool Tip.

| ceseet | Edin..] Hee |

A number of different sample tool scripts are provided with the TNT products. You can use components from any or all of
these scriptsto create the custom tool you need for your specialized application. The interface windows created by some of
these tool scripts are shown below.

= e/ Palgyon Edak Conbrol @SB

= lpgion Skadinkien

E7iegmist List MEO ',- s W Tl e The Flow Path
Filbeakd SB-E I [l 7 \
tool script lets
you choose
o which of a
The Area Statistics number of
tool script lets you watershed
1 R A, B draw a polygon properties you
around a region on the would like to
] [—— _ || screen and c.orTlputes see from a
The ViewMarks tool script builds up a Brea bafte; morsa o tEe area stat;str;cs for given point in
list of desired view points and scales e | that region of the the view.
. > ; — selected raster.
S0 you can jump to specific locations.

Microlmages, I nc. (402)477-9554 « FAX (402)477-9559 « 206 S. 13th Street, Lincoln, Nebraska 68508-2010 USA « info@microimages.com « October 2000

Sample SML Tool Script

ViewMarks

ViewMarks are position markersfor asingle view win-
dow. They are particularly useful for layouts covering a
large geographic area, especially when limited map scale
visibility isused to add and remove layers as you zoom
in and out. Mark aview of interest and return to that
view from any scale or position by selecting it from the
list of viewpointsyou build up.

: < T 1c i pt, aportion of which isshown on the other side

1.0 H-l-ll_ s | Im:lm‘ of this page, createstheViewpoint List window (below,
E— left) with the buttons needed to make, save, and open
viewpoint lists; to add and remove points from the list; and to zoom to the selected point and close the
window. You can also double-click on alist entry to display it.

BPrempt _|C)|]
. . . When you add a ViewMark, the default name provided
EiViewpoint List MmE] is the map scale and center coordinates for the view, s

b EI il:l ilzl which can be changed to a more descriptive name. I . . il
= Lagost Vie

Ami

Hebraska
Jtoe Count
Palnyra
ouse
oils

The Viewpoint List remains as long as
the current View window isopen. If you
want to use the same ViewMarks in an-
other display session, you need to save
thelist. When you choose to save your
viewpoint list, a.posfileiscreated. This
filesmply containsthe nameyou entered
for the viewpoint, the map scale, and cen-
ter point for each viewpoint on the list.
Thus, thefile can be used again with the
same group, layout, or single-layout at-

ow | R EES las, or it can be used with a completely
I"- CES S N ERS S S T"" different set of layersthat coversthesame
geographic area.

Thus, ViewMarks et you work with data setsthat cover
large areas and still rapidly locate and return to areas of
interest in high resolution imagery or detailed vector
objects. ViewMarks have use beyond TNTmips' Dis-
play process; they can be set up for any processthat uses
aView window, for example, the Spatial Data Editor.
Thus, you can mark anumber of positionsthat are criti-
cal to check after some global editing operation, such as
line snapping or filtering, and return to each with ease.

The example on this page is derived from the Nebraska State-
wide atlas, which is a single layout that uses map scale con-

[
Views [18100 Seatex|” 38438) & {8 a0 @ 17377 o[W 08 22 20.574 trolled visibility to increase the level of detail shown as you
Thes &0 dromg 1 Gevosds | zoomin.

Microlmages, Inc. (402)477-9554 « FAX (402)477-9559 « 206 S. 13th Street, Lincoln, Nebraska 68508-2010 USA « info@microimages.com « October 2000

Macro and Tool Scripts can be created using SML in any TNTmips process that uses a View window (Options / Custom-
ize from the View window menu bar). These scripts are then available from an icon, which you select or design, on the
toolbar. Sample scripts have been prepared to illustrate how you might use these features, which are available only in
TNTmips 6.4 or later, to assist with specific tasks you perform on a regular basis. If possible, the full script is printed
below for your quick perusal. When a script is too long to fit on one page, key sections are reproduced below. All
sample Tool and Macro Scripts illustrated can be found in their entirety on your TNT products CD-ROM in the directory
where your TNT products are installed. These scripts, among others, can be downloaded from the SML script exchange
at www.microimages.com/sml/ftpsmllink/TNT_Products_V6.4_CD.

Partial Script for ViewMarks (vptool.sml)

class XmForm digform;
classXmList podlist;
classMAPPROJ projLatLon;
class TRANSPARM transMapToView;
class FILE posfile;

number ischanged;

number setDefaultWhenClose;
number numpos,

array posxX([1];

array posY[1];

array posScale[1];

func DoSave () {
if (numpos == 0) return;
posfilename$ = GetOutputFileName(*”,” Select position file to save as:”,"pos’);

DeleteFile(posfilenames);
posfile = fopen(posfilename$,"w");
if (posfile == 0) return (false);

saves the list
to afile

local i;
fori = 1 to numpos {
fprintf(posfile,” %s,%f ,%f,%f\n" poslist.Getl temAtPos(i),posX[i] ,posY [i],posScal €fi]);

}
fclose(posfile);
ischanged = false;
return (true);

}
func AskSave () {
if (tischanged || numpos == 0) return (true);
local answer;
answer = PopupYesNoCancel (“ Save current point list?’,1);
if (answer < 0) return (false);
if (answer == 0) return (true);
return (DoSave());

}
proc DoZoom () {
local selpos;
if (numpos == 0) return;
selpos = poslist.GetFirstSel ectedPos();

zooms to sel-
ected position

if (selpos > 0) {
transMapToView = ViewGetTransMapToView(View,projLatLon);

if (transMapToView == 0) {
PopupM essage(“ Cannot obtain map/view transformation.”);
return;

}
class POINT2D zpoint;
zpoint.x = posX[selpos];
zpoint.y = posY [selpos];
zpoint = TransPoint2D(zpoint,transMapToView,false);
class RECT vextents;
vextents = View.Extents;

if (zpoint.x < vextents.x1 || zpoint.x > vextents.x2 || zpoint.y < vextents.yl || zpoint.y > vextents.y2) {

PopupM essage(“ Point is outside extents of objects being viewed.”);
return;

}
View.DisableRedraw = true;
View.CurrentMapScale = posScale[selpos];
View.Center = zpoint;
View.DisableRedraw = false;
ViewRedraw(View);
}

}
proc DoAdd () {
transMapToView = ViewGetTransMapToView(View,projLatLon);
if (transMapToView == 0) {
PopupM essage(“ Cannot obtain map/view transformation.”);
return;

}
class POINT2D cpoint; adds current

cpoint = TransPoint2D(View.Center,transMapToView,true); viewpoint to
nuMpos = numpos + 1; list
ResizeArrayPreserve(posX,numpos);
ResizeArrayPreserve(posY,numpos);
ResizeA rrayPreserve(posScal e,numpos);
posX[numpos] = cpoint.x;
posY [numpos] = cpoint.y;
posScale[numpos] = View.CurrentMapScale;
namestr$ = sprintf(“1:%.0f %f %f” ,posScal e[numpos],posX [numpos],posY [numpos]);
namestr$ = PopupString(“ Enter view position name:” ,namestr$);
while (poslist.ItemExists(namestr$)) {
namestr$ = PopupString(“Name already used.\nEnter view position name:” ,namestr$);
}

poslist. Addltem(namestr$);
ischanged = true;

proc DoRemove () {
local selpos;
local i;
if (numpos == 0) return;
selpos = poslist.GetFirstSel ectedPos();

if (SS'PZS_>§)B|{ cPoseinog removes
poslist.Delet pos); .
for i = selposto numpos - 1 { 56|eCt_Ed item
posX[i] = posX[i+1]; from list

posY[i] = posY[i+1];
posScal€fi] = posScale]i+1];
}
numpos = NUMpos - 1;
ischanged = true;
}
}
proc DoNew () {
if (IAskSave()) return;
numpos = 0;
poslist.DeleteAllltems();
ischanged = false;
}
proc DoOpen () {
if (IAskSave()) return;
posfile = GetlnputTextFile(*”,” Select positions file to open:”,"pos’);
if (posfile == 0) return;
numpos = 0;
poslist.DeleteAllltems();
ischanged = false;
while (!feof(posfile)) {
filestr$ = fgetline$(posfile);
if (NumberTokens(filestr$,”,”) < 4) continue;
nuMPpos = nUMpos + 1;
ResizeArrayPreserve(posX,numpos);
ResizeArrayPreserve(posY,numpos);
ResizeArrayPreserve(posScal e,numpos);
poslist. Addltem(GetToken(filestr$,”,”,1));
posX[numpos] = StrToNum(GetToken(filestr$,”,”,2));
posY [numpos] = StrToNum(GetToken(filestr$,”,”,3));
posScale[numpos] = StrToNum(GetToken(filestr$,”,” 4));

clears the list

opens file
containing list

}
fclose(posfile);
}

proc DoClose () { closes the
if (setDefaltWhenClose) { ;
setDefaultWhenClose = false; window and
View.SetDefaultTool (); switches to
} default tool

}

func Onlnitialize () {
class MAPPROJ tempLatLon;
tempLatLon.System = “LatLon";
tempLatLon.Datum = “WGS84”;
projLatLon = tempLatLon;
digform = CreateFormDialog(“ Viewpoint List”,View.Form);
WidgetAddCallback(dlgform.Shell.PopdownCallback,DoClose);
class PushButtonltem btnltemNew;
class PushButtonltem btnltemOpen;
class PushButtonltem btnltemSave;
class PushButtonltem btnltemAdd;
class PushButtonltem btnltemRemove;
class PushButtonltem btnltemZoom;
class PushButtonltem btnltemClose;
btnitemNew = CreatePushButtonltem(“ New” ,DoNew);
btnitemNew.lconName = “new”;
btnitemOpen = CreatePushButtonltem(“ Open...” ,DoOpen);
btnltemOpen.lconName = “open_";
btnitemSave = CreatePushButtonltem(* Save...”,DoSave);
btnlitemSave.lconName = “save’;
btnitemAdd = CreatePushButtonltem(*Add” ,DoAdd);
btnitemAdd.lconName = “add_sel”;
btnitemRemove = CreatePushButtonltem(“ Remove” ,DoRemove);
btnltemRemove.lconName = “remove_sel”;
btnltemZoom = CreatePushButtonltem(“Zoom" ,DoZoom);
btnitemZoom.IconName = “apply”;
btnltemClose = CreatePushButtonltem(* Close” ,DoClose);
btnitemClose.lconName = “delete”;

(see vptool.sml for full script)

is called the first
time the tool is
activated

Microlmages, INnc. (402)477-9554 « FAX (402)477-9559 « 206 S. 13th Street, Lincoln, Nebraska 68508-2010 USA « info@microimages.com « October 2000

Sample SML Tool Script

= Group 1 - Group Yiew 1

Yiew Tool LegendY¥iew GPS Options

][]
Help

77\

W

Area Statistics
The Area Statistics script is one examp|ELEE T aes
of many possible applications you caffaster: sPOT-FAK

ells: 7631
create using an SML Tool Script. Thi“L_-ll Cells: 0

ininun: 30,00

sample script lets you draw & polygofexinun: €.00

in the View window and get a listing Of|standard Deviation: 3.76
computed raster statistics for the defingplraerers 4ito.ss

area. The Tool Script, which is showpk ot e e oy oo
on the other side of this page, automati

cally provides the graphic tool for draw: frea vnits:
ing the polygon and the Region Statis-
tics window to list the results. You coulc

customize this script by adding other sta-

L =
T

Distance Units: neters =]

square neters = |

Save As...

™

@m0l - ORI R|QSTRE Q™ k] =/ B85}

."".15-_

=Y

- 4 T Sk
3 il

=_F

84
ol il

tistics computations. You can also usetssttiaiE iRl D

Action|| S°les !

21347 3¢| x| § [473116869 < 634585,06 n

it as a model for building your own SCripls s s fs ¢/ { ¢l

ﬁ >< . |l: <1 Second I

that draws a polygon and uses it for so
. HPPlHI
operation on one or more layers.

Help I |

=Group 1 = Group Yiew 1

Yiew Tool LegendYiew GPS Options

R R e Y
g

f

Centroid: 217342.14, 3977301,50
Surface Area: 6641,92

- Distance Units: kiloneters = l

. Area Units: acres =) |

Close

Save As... |
o W
Dup
Group Layer DOptions

e 7 I v ¥ 3.

L Band3, Band2, Bandl

B -G oo DE

=

vy

125000 ¢ [+ $|

3976588.64 ﬂl b E T) 7/
! /
7
The Area Statistics Tool Script operates on the raster layer that is currently
active. Inthe example above the DEM raster layer is active, but the polygon

0 -Fh
view:| 2.3 Scale:|

If you want to create your own Tool
Script, you don’t have to start com-
pletely from scratch. When you create
a new script you are provided with a
script “skeleton”: a series of com-
mented lines that include a number of
predefined functions that will be called
(if used in the script) when the appro-
priate tool action or event occurs (as
explained in the comments preceding
each function). To use a function,
uncomment the lines containing the
start and end of the function definition,
and add code in between to define what
you want the function to do.

You can choose any icon (or design
your own) to launch the Tool Script
and provide text for its ToolTip.

outlining the burned area is drawn on an overlying RGB raster layer that

shows a natural-color satellite image. The resulting statistics include the

= Tool Script Properties M=
File:|c:\tnt\win32\REGSTATS.SHL
Tcon: ﬁ,

ToolTip: |Flr-ea Statistics
0K | Cancel | Ed_i.t...l Help |

minimum, maximum, and mean elevations for the burned area, which might
help establish replanting schedules. When you are displaying multiple raster
layers, remember to make the target raster the active layer before computing
the statistics for the polygon. Statistics can be computed for any type of
grayscale or binary raster, but not for RGB raster layers.

Development of this and other sample Tool
Scripts continues at Microlmages. Check
the Microlmages web site for an updated
version incorporating additional features.

Microlmages, Inc. (402)477-9554 « FAX (402)477-9559 « 206 S. 13th Street, Lincoln, Nebraska 68508-2010 USA « info@microimages.com « October 2000

Macro and Tool Scripts can be created using SML in any TNTmips process that uses a View window (Options / Cus-
tomize from the View window menu bar). These scripts are then available from an icon, which you select or design, on
the toolbar. Sample scripts have been prepared to illustrate how you might use these features, which are available
only in TNTmips 6.4 or later, to assist with specific tasks you perform on a regular basis. If possible, the full script is
printed below for your quick perusal. When a script is too long to fit on one page, key sections are reproduced below.
All sample Tool and Macro Scripts illustrated can be found in their entirety on your TNT products CD-ROM in the folder
in which you installed TNTmips 6.4. These scripts, among others, can be downloaded from the SML script exchange
at www.microimages.com/sml/ftpsmllink/ TNT_Products_V6.4_CD.

Script for Area Statistics (regstats.sml)

Pfocl CbFTEdraWQ (I Ierimeter. Isurface: surface +=.5*sqrt(sqr(yscale*downright*zscale-
ocalnumeric larea, Iperimeter, Isurtace; yscale*right*zscale)+sqr(xscale*downright*zscale-
larea = areaScale * area: | scales the values to specified units| g 4o SCRlETdONZSCAIE) (XSGR SCale)):

) cells +=1;
Iperimeter = distScale * perimeter;)

Isurface = areaScale * surface;
if (gc == 0) return;
ActivateGC(gc); redraws Region Statistics if (count > 1) {

window when new mean = sum / count;
stdDev = sqrt((sumsqr - sqr(sum) / count) / (count - 1));
area=MyRgn.$Data.GetArea();

CloseRaster(targetRaster); avoids division by zero
when computing mean
and standard deviation.

SetColorName(“gray75”); o
FillRect(0, 0, da.width, da.height); statistics are computed
SetColorName(“black”); ; _ ; .
N i perimeter =MyRgn.$Data.GetPerimeter();
if (cells > 0) {DrawlnterfaceTgxt(spnntf(Rasterl: %s\nCells: centroid =MyRgn.$Data.GetCentroid();

%d\nNull Cells: %d\nMinimum: %.2f\nMaximum: %.2f\nMean:)

%.2f\nStandard Deviation: %.2f\nArea: %.2f\nPerimeter: .

" cbRedraw();

%.2f\nCentroid: %.2f, %.2f\nSurface Area: %.2f",

rasterName$, count, cells - count, min, max, mean, stdDev, larea,

Iperimeter, centroid.x, centroid.y, Isurface), 0, 10);

StatusContextDestroy(context); dEStrOyS Fhe status dlalOQ when
StatusDialogDestroy(status); computations are complete
}# end of cbToolApply

else DrawInterfaceText(sprintf(“Raster: %s\nCells:\nNullCells: }

\nMinimum:\nMaximum:\nMean:\nStandardDeviation:\nArea:\nPerimeter: is called the first time

\nCentroid:\nSurface Area:", rasterName$), 0, 10); func Onlnitialize () { the tool is activated;

} form =CreateFormDialog(“| i istics”); i
" = g(“Region Statistics”);
) main tool procedure, called form.marginHeight = 2; ;:reialtesdt?jg lgraphlc
proc.fcbﬁooLALpply(class RegionTool tool) { within Onlnitialize function form.marginWidth = 2; 00l an lalog

if (checkLayer() { WidgetAddCallback(form.Shell.PopdownCallback, chClose);

local numeric sum, sumsqr, xscale, yscale, zscale;

local numeric current, right, down, downright; da = CreateDrawingArea(form, 173, 301);

:oca: relzglorlsl:/l)t/Rgl_T; desiat da.topWidget = form; creates drawing area

ocal class StatusHandle status; ; . . X

! da.leftwidget = form;
local class StatusContext context; emyicget =Torm for dlaIOg window

da.rightWidget = form;

cells = 0; min = 0; max = 0; mean = 0; stdDev = 0; sum = 0; WidgetAddCallback(da.ExposeCallback, chRedraw);
sumsqr = 0; count = 0; surface = 0; area = 0; perimeter = 0;

centroid.x = 0; centroid.y = 0; current = 0; right = 0; down = 0;

linel=CreateHorizontalSeparator(form);

downright = 0; . " ; - S
xscale = ColScale(targetRaster); defines local variables for I!nel.topW_ldget:da, _ CI'E:':.lte.S separator between

le= LinScale(targetRaster): tatisti lculati linel.leftWidget = form; statistics and menus
yscale =LinScale(targetRaster); statistics calculation lineL.rightWidget = form;

zscale =Group.ActiveLayer.zscale; line1.bottomOffset = 2:

MyRgn = tooI:Region; X X distMenu = CreateUnitOptionMenu(form, “distance_units_c”,cbDistUnits,
MyRgn=RegionTrans(MyRgn, ViewGetTransLayerToScreen(View, 2,0);

rgsterLayer,))) X distMenu.topWidget =linel;
MyRgn=RegionTrans(MyRgn, ViewGetTransLayerToView(View, distMenu.leftwidget = form;

creates menu for selecting units

rasterLayer));
MyRgn=RegionTrans(MyRgn, ViewGetTransMapToView(View, areaMenu = CreateUnitOptionMenu(form, “area_units_c”, chAreaUnits,
rasterLayer.Projection, 1)); 1,0);

creates status d|a|og areaMenu.topWidget =distMenu;

context = StatusContextCreate(status); areaMenu.leftwidget = form;

StatusSetMessage(context, “Computing values...”);

line2 =CreateHorizontalSeparator(form);

foreach targetRaster[lin, col] in MyRgn { line2.topWidget = areaMenu;

if (!IsNull(targetRaster)) {

creates separator between

f —_ P line2.leftWidget = form;

if (count == 0) { . computes statistics line2.rightWidget = form; menus and buttons
max = targetRaster; for the polygon line2.topOffset = 2;
min = targetRaster;

}. saveButton = CreatePushButtonltem(“Save As...", cbSave); creates
else if (targetRaster > max) { buttons

max = targetRaster;

closeButton = CreatePushButtonltem(“Close”, cbClose);

else if (targetRaster < min) {

| buttonRow = CreateButtonRow(form, saveButton, closeButton);
min = targetRaster;

buttonRow.topWidget =line2;
buttonRow.leftWidget =form;
buttonRow.rightWidget =form;
buttonRow.bottomWidget = form;

sum += targetRaster; creates button row

sumsqr += sqr(targetRaster);

count +=1, -
} estimates surface area by ' ' creates standard
X) tool = ViewCreatePolygonTool(View, “", ", “"); .
f(1sNultargetRasten) adding areas of triangles ToolAddCallback(tool. ActivateCallback, chToolApply); polygon drawing
: # end of Onlnitiali
current = targetRaster: created by current'cell and } #endo itialize tool
if (!IsNull(targetRaster(lin,col+1])) cell below, cell to right, func OnDestroy () {
_ right=targetRaster[lin,col+1]; and cell to lower right. tool.Managed = 0;
if ('IsNull(targetRaster[lin+1,col])) DestroyGC(ge); destroys the tool
down =targetRasterlin+1,col]; DestroyWid tyf :
if ('IsNull(targetRaster[lin+1,col+1])) estrayWidget(form); when necessary

} # end of OnDestroy

downright=targetRaster[lin+1,col+1];

surface +=.5*sqrt(sqr(yscale*current*zscale-yscale*
right*zscale)+sqr(xscale*current*zscale-xscale*down*zscale)
+sgr(xscale*yscale));

Microlmages, Inc. (402)477-9554 « FAX (402)477-9559 « 206 S. 13th Street, Lincoln, Nebraska 68508-2010 USA « info@microimages.com « October 2000

Sample SML Tool Script

Region Statistics

The Region Statistics tool script demonstrates how you
can design acustom tool to visually select polygonsand
convert them to a temporary region to define the area
for action on another coregistered layer. A tool with
these functions could then use the region in avariety of
operations. In this example, the region is used in the
simple operation of extracting statistics from a raster
object. This same tool could be modified to perform
many other functions with the regions it creates. For
example, it could extract points, lines, or polygonsfrom
another vector layer or use the extract functions to cre-
ate rasters of the regions.

Bbiroag 1 = browp Yiew |

Fiew Tool LependiView GPS Options

E

The Region Statistics script |ets you select one or more
vector polygons then calculates a set of statistics from
an underlying raster for the area covered by the selected
polygon(s). The top vector layer is used for polygon
selection and the statistics are calcul ated for the bottom
raster layer. The statistics calculated include the num-
% ber of cells, the number of null cells, the minimum and
statistics for a maximum cell values, the mean cell value, the standard deviation of cell values,
single polygon
the area of the region, its perimeter length, the coordinates of the centroid, and a
surface area estimation. You can choose from any of the 25 length units and 13
area units standardly available throughout the TNT products for viewing the pe-
rimeter and area statistics. You can also save the calculated statistics as a text

Controids =103,79, 42,64 file. If you select the sametext file again, the current statistics will be appended
e to earlier entries.

BlRegion Statistics

Blirsup | = Growup Vied 1

This custom script reports the same
statistics as the Area Statistics tool
script. The method of area defini-
tion differs between the two—one
has you draw the area and the other
uses selected polygons to create a
region. Together these scripts pro-
vide an excellent example of how to
use the sample scripts provided by
Microlmages to put together the
pieces you need for your own cus-
tomtool. Think of the samplemacro
and tool scripts provided as a series
of modulesto bereused for the same
or different purposesin a script that
creates the custom tool you want. This script, for example, has modules concerned with selecting polygons, making aregion
from selected polygons, using a status window, calculating standard raster statistics for alocal area, and estimating surface
areafrom an elevation raster.

statistics for a multi-
polygon region

Microlmages, I nc. (402)477-9554 « FAX (402)477-9559 « 206 S. 13th Street, Lincoln, Nebraska 68508-2010 USA « info@microimages.com « October 2000

Macro and Tool Scripts can be created using SML in any TNTmips process that uses a View window (Options /
Customize from the View window menu bar). These scripts are then available from an icon, which you select or
design, on the toolbar. Sample scripts have been prepared to illustrate how you might use these features, which are
available only in TNTmips 6.4 or later, to assist with specific tasks you perform on a regular basis. If possible, the full
script is printed below for your quick perusal. When a script is too long to fit on one page, key sections are repro-
duced below. The sample Tool Script illustrated can be downloaded from the SML script exchange at
www.microimages.com/sml/ftpsmllink/TNT_Products_V6.4_CD.

Partial Script for Region Statistics (regstatp.sml)

- P I ets point
func checkLayer() { checks to see if pointx = tool.Point.x; goorc?inates of tool
local boolean valid = false; layers are valid point.y = tool.Point.y;

point = TransPoint2D(point, ViewGetTransViewToScreen(View, 1));

if (G .LastL - Type == “Vector”
if (Group. ayer.lype o) { point = TransPoint2D(point, ViewGetTransMapToView(View, vectorLayer.Projection, 1));

vectorLayer = Group LastLayer; gets layer name if top

DispGetVectorFromL ayer(targetVector, vectorLayer);
if (targetVector$Info.NumPolys > 0) { Iayer is vector, gives elementNum = FindClosestPoly(targetVector, point.x, point.y, GetL astUsedGeoref Object(targetVector));

vectorName$ = vectorL ayer.Name; error if not
valid = true;

if (elementNum > 0) {
MyRgn = ConvertVectorPolyToRegion(targetVector, elementNum,

else vectorNames = “No polygons!”; Getl astUsedGeorefObject(targetVecton)); convert selected
dsevéctorNaméB: “Not avector!”; if (regionMode$ == “plus’) { polygon(s) to region and
if (Group.FirstLayer Type == “Raster’) { if (numRegions > 0) { transform to appropriate
rasterL ayer = Group.FirstLayer; ;"'VRQ“ = RegionOR(reg, MyRg"): | coordinate system

DispGetRasterFromL ayer(targetRaster, rasterL ayer);

if (targetRaster.$Info. Type = *binary” and numRegions += 1;

vectorL ayer.Poly.HighlightSingle(elementNum, 2);

targetRaster.$Info. Type ! = “32-bit float” and
targetRaster.$Info. Type ! = “64-bit signed” and
targetRaster.$Info. Type ! = “64-bit unsigned” and
targetRaster.$Info. Type ! = “64-bit float”) {
rasterName$ = “Type not supported!”;

valid = false; } ,

} reg = CopyRegion(MyRgn);

MyRgn = RegionXOR(MyRgn, MyRgn);
numRegions = 0;

targetRaster.$Info. Type ! = “4-bit unsigned” and -

targetRaster.$Info.Type ! = “8-bit signed” and gets layer name if dse{}

targetRaster.$Info. Type ! = “8-bit unsigned” and i i))

targetRaster.$Info. Type ! = “ 16-bit signed” and bOt:OI’ﬂt Iayer I.S valid if (numReglonf> 1)-{ .
targetRaster.$Info. Type ! = “ 16-bit unsigned” and ras er_ YPe, gives MyRgn - RegionSubirac(reg, MyRgn);
tergetRaster.$Info. Type != “32-bit signed” and error if not numRegions-= 1;

targetRaster.$Info. Type ! = “32-bit unsigned” and dse }

}
vectorL ayer.Poly.HighlightSingle(elementNum, 3);

ese -
status = StatusDialogCreate(form); creates status dialog

context = StatusContextCreate(status);
StatusSetM essage(context, “Computing values...”);

rasterName$ = rasterL ayer.Name;

}

else{
\':gg?;‘:: ="Notaraster!”; foreach targetRaster[lin, col] in reg {
. it (! Sﬁu('égj] %‘:S%S)‘?)) { calculates statistics
;eturn valid; ma = targetRester; for the region
min = targetRaster;
proc cbRedraw() { dse @ (targetRaster > max) {

local numeric larea, Iperimeter, |surface;
< fper max = targetRaster;

larea= areaScale * area; scales the values to
Iperimeter = distScale* perimeter; | specified units
Isurface = areaScale * surface;
if (gc == 0) return;

}
elseif (targetRaster < min) {
min = targetRaster;

ActivateGC(go); redraws Region sum += targetRaster;
ot . sumsgr += sgr(targetRaster);
SOl g1y 75") Statistics window count 4= 1:
olorName(“gray75"); - 3
FillRect(0, 0, dawidth, daheight); when new statistics }
SetColorName(* black”); computed o
if (cells> 0) { if (*IsNull(tergetRaster)) method for

current = targetRaster; . .
if (lsNull (targetRasterlin.col +1])) estimating
right = targetRaster[lin,col +1]; surface area
if (!1sNull(targetRaster[lin+1,col]))
down = targetRaster[lin+1,col];
if (!1sNull(targetRaster[lin+1,col+1]))
downright = targetRaster[lin+1,col +1];
surface += .5* srt(sqr(yscal e* current* zscal e-yscal €* right* zscale)
+sqr(xscale* current* zscal e-xscal e* down* zscale)

DrawlnterfaceText(sprintf(* Vector: %s\nRaster: %s\nCells: %d\nNull Cells: %d\nMinimum:
%.2f\nMaximum: %.2f\nMean: %.2f\nStandard Deviation: %.2f\nArea: %.2f\nPerimeter:
%.2f\nCentroid: %.2f, %.2f\nSurface Area: %.2f",

vectorName$, rasterName$, count, cells - count, min, max, mean, stdDev, larea, |perimeter,
centroid.x, centroid.y, Isurface), 0, 10);

}
else Draw| nterfaceText(sprintf(“ Vector: %s\nRaster: %s\nCells\nNull
Cells\nMinimum:\nMaximum:\nMean:\nStandard Deviation:\nArea:\nPerimeter:\nCentroid:\nSurface
Area” vectorName$, rasterName$), 0, 10);

} +sgr(xscale*yscale));
procedures after right mouse surface += .5* sqrt(sgr(yscale* downright* zscale-yscale* right* zscale)
proc chTool Apply(class pointTool tool) { button click (tool applied) +Sqr(>(scale*dwnrlqm*zmdexxde*down*zxde)
if (checkLayer()) { L +sgr(xscale*yscale));
local numeric sum, sumsgr, xscale, yscale, zscale; " cells+=1;
local numeric current, right, down, downright, elemNum; def_mes local L a se}R R)
local region MyRgn; variables for statistics oseRaster(targetRester);
local class POINT2D point; i
g calculations i — —
local class StatusHandle status; if (count > 1) { additional statistics

local class StatusContext context; mean = sum/ count; :
cells = 0; min = 0; max = 0; mean = 0; stdDev = 0; sum = 0; sumsgr = 0; count = 0; surface = 0; stdDev = sqr((sumsor - sar(sum) / count) / (count - 1)); Calc_u!ated. V_/h_”e
area= 0; perimeter = 0; aea= reg.$Data GetArea();) av0|d|ng division
centroid.x = 0; centroid.y = 0; current = 0; right = 0; down = 0; downright = 0; perlmtleter = reg $Data GetPeri maer(), by zero

xscale = Col Scale(targetRaster); centroid = reg.$Data GetCentroid();
yscale = LinScal e(targetRaster); }

zscale = Group.FirstLayer.zscale;

(see regstatp.sml for full script)

Microl mages, I nc. (402)477-9554 « FAX (402)477-9559 « 206 S. 13th Street, Lincoln, Nebraska 68508-2010 USA « info@microimages.com « October 2000

Sample SML Tool Script

Run Browser

The Run Browser script provides an example of acustom
script used to launch an external application. The web
browser was chosen as the exampl e program becauseit is
the one type of external program that al clients are most
likely to have so you can run the script. The function that
launches the external application is the same for any file
type; it simply uses the file name provided to determine
which application to launch. For example, file namesthat endin .ppt will launch
Microsoft PowerPoint.

A Polugsss
Choose the element type for links
when the active layer is a vector.

The Run Browser script lets you select elementsin a vector or cell valuesin a
raster layer, choose an associated URL for aweb site to visit, then launch your
Internet browser and go to the selected site. The associations between element attributes

= SR s M R R “| or cell values and URLs are specified in a separate text file, which means there are two
S (B 1=, s e ot n A s =~ = files needed to use thistool (urls.sml and url.txt). Thetext file specifically lists the name
LTI Erim ¥Eecz 3 En T #| and description for each object with URL links. Any number of objects can be listed in

Erit o E;‘:m:?;—m_ﬂ-ﬂ the_fl le, but if the active Ia?‘/er_ in the group or layout d_oes not contain one of the

- T N] =| objects named, you get a F|Ie_ not four_1d” message instead of alist of_ URLs.
KETTH S M) o ot e i crmrios 8] gl To get results when you use this tool without altering the sample text file, you
—— m— 4 need to haveeither cesoiLs_LiTE fromthecs_soiLs Project File (cs_bata folder)
T e v 5 | Pt :I or cLs_maxLIKE from thesercrreL Project File (Berea folder) asthe activelayer.
btierimimn | s BT Both Project Files are found with the litedata on your TNT products CD-ROM
e ™ ' PN or with the TNTlite datasets on Microlmages' web site.
JAYEM SERIES)))
e You can associate one or more URL swith each attribute or cell value. You can
) e ey, e cons o e ey, el pemwhal oyt dnaned also associate the |FTESSErT =T
B DU TSR | same URL with dif-
s e ferent attributes if
TANTH AT CLARS. Crni-bo sy, dacuted. doperic b8, cimi Junch desired. Theaample
ey .| text file associates
L1 _L polygons of soil

type KeB, JmD, or Bd in cesoiLs_LITE with pages about the correspond-
ing soil type at lowa State University’s web site. You could, of course,
associate all the soil types with appropriate pages. To use the tool, left-

l:mmm:_:in click onthe polygon or
Br D8 B fren Imh b 8 cell desired thenright-

-, 2 J 9 D . .
[G Pelms Hew lamk Frwm e click to confirmthe se-
A [17 e i e 1 x| e | Lsin

lect tool is correctly

Corn's gone-Can beans be far behind? j positioned. The
5 C1A BIFEURE MINOOATEH HEHE PALL Ham i | R URL(S) associ-

s et e 0 L tedwithwhere SIS IS
wancrbcnn 151 gl i = e '-'-ﬂ‘:-h_ .. you clicked appear in the Select a URL window. Choose the desired
ﬁ;:: 5l URL, then click on the Launch Browser button. Your Internet browser
Tie sar lndu V' corn Refiners Association e vyill open if not open already and go to the designated web site and speci-

{'::"":‘:':': T L sman e W _ flaj pme

sty wa| B You can easily add URL links for your own objects to this file. Toward
ey the bottom of the Select a URL window thereis an Action panel that lets
:::::: you choose between Scan and Add. Switchto Add, and for avector, left-
e, pa click and right-click on an element of the type you want to link to. You
£lle ; Those to web s oo]| @rethen prompted to select atable and field for the attribute and finally,
e |tound when you ciick on || tO €nter the URL you want elements with the selected attribute value to
e reesessesany cell that has been link to. For araster, you are ssmply prompted to enter the URL to add for
e ClaSSlfled as corn. the cell value you clicked on. The necessary text with the proper syntax
- e = “__ =l isentered in the url.txt file. You can then toggle on Scan for the action,

select the cell or polygon, and go to the designated web site.

Microlmages, I nc. (402)477-9554 « FAX (402)477-9559 « 206 S. 13th Street, Lincoln, Nebraska 68508-2010 USA « info@microimages.com « October 2000

Macro and Tool Scripts can be created using SML in any TNTmips process that uses a View window (Options /
Customize from the View window menu bar). These scripts are then available from an icon, which you select or
design, on the toolbar. Sample scripts have been prepared to illustrate how you might use these features, which are
available only in TNTmips 6.4 or later, to assist with specific tasks you perform on a regular basis. If possible, the full
script is printed below for your quick perusal. When a script is too long to fit on one page, key sections are repro-
duced below. The sample Tool Script illustrated can be downloaded from the SML script exchange at
www.microimages.com/sml/ftpsmllink/TNT_Products_V6.4_CD.

Reference File for Run Browser Script (url.txt)

URLs linked

[CBSOILS Lite: Crow Butte soil type polygon overlay] ~_ object name WWW.microi mages.com

{poly CLASS Class KeB} At www.wheatworld.org
vt astate exufsoil losclda KENTH |2 description www.oznet ks eduiwheatpager | 1O CEll value 3
{poly CLASS Class JmD} element type {7 -
www.statl abi astate.edu/soil/osdl/dat/JIAY EM html s\ and attrib)L/JFt)e (s} cell values linked to
{poly CLASS Class Bd} . www.agpub.on.ca/text/july16/crop_1.htm following URL(S)
www.statlab.i astate edu/soils/osd/dat/B/BANK ARD.htm value sppecified

Www.corn.org
[CLS MAXLIKE : Class raster from 6_06, 7_30, & 10_10 (Green, Red, NIR6)] {5}
{3} www.ag.uiuc.edu/~food-lab/soy/soy.html

Partial Script for Run Browser (urls.sml)

elseif (lineButton.Set == 1) {
mode$ = “line”;

proc cbLayer() {
if (Group.ActiveL ayer. Type == “Raster”) {
vectorLabel.Sensitive = 0;
pointButton.Sensitive = 0;

}
else mode$ = “poly”;
}

nodeButton.Sensitive = 0; 7
b i ' i i sets Action
lineButton Sensitive = 0; sets wmd_ow options proc chActionChanged() { e
polyButton.Sensitive = 0 when active layer if (scanButton.Set == 1) {
} action$ = “scan”;

asef changes

vectorLabel.Sensitive = 1;
polyButton.Sensitive = 1;
lineButton.Sensitive = 1;

nodeButton.Sensitive = 1;
pointButton.Sensitive = 1;

right mouse button click to confirm|

}
else action$ = “add”;
! selection does the following

proc chTool Apply(class RegionTool polyTool) {
list DeleteAllitems(); | clears the list

} local string url$, layerName$, temp$, temp2$, item$, element$, table$, field$, values;
cbRedraw(); local class FILE reffile;
} local class LAYER layer; sets up local
proc cbOpen() { Open File button local numeric numTok, i, j, num, start; variables
filepath$ = GetlnputFileName(filepath$, “ Open URL file”, “txt"); . local class POINT2D point;
cbhRedraw(); functions local class StatusHandle status;

} local class StatusContext context;
proc chGo() { Launch Browser layer = Group.ActiveL ayer;

local string url; button functions
url$= list GetltemAtPoslist. GetFirstSelectedPos());

if (list.SelecteditemCount > 0 and url$!=“No URLs found!” and url$!= “Type not supported!”
and url$!= “No element found!” and url$!= “File not found!”)

Runa sl pplialon(us); e —
} \

keep going if active
layer is raster or vector

if (layer.Type == “Raster” or layer.Type == “Vector") {
point.x = pointTool .Point.x;
point.y = pointTool .Point.y;

get coordinates of selected point

Set up layer, object, layer name, and point transformations.

Haram je= k-..-m . u "
o if (layer.Type == “Raster") {
proc clearHighlight() { *é:“ point = TransPoint2D(point, ViewGetTransL ayerToScreen(View, layer, 1));
if (Group.Activel ayer.Type == “Vector”) { e DispGetRasterFromLayer(rv, layer);

local classVECTORLAYER vl;

vl = Group.Activelayer;

if (mode$ == “point”) {
vl.Point.HighlightSingle(1);
vl.Point.HighlightSingle(1, 3);

layerName$ = “[* + rv.$Info.Name + “ : “ + rv.$Info.Desc + “]”;

}
elseif (layer.Type == “Vector”) {
point = TransPoint2D(point, ViewGetTransViewToScreen(View, 1));
point = TransPoint2D(point, ViewGetTransMapToView(View, layer.Projection, 1));
local classVECTORLAYER vl;

\

| Poarly v i an el | Lrat e 7 |

[Foran appl b lar s Lot el pamnamt Tila

}
elseif (mode$ == “node”) {

vl = layer;

2. " el
unhighlights vl.Node HighlightSingle(1); Ll B DispGetVectorFromLayer(wv, layer);
selected Vi-Node HighlightSingle(1, 3); o . layerName$ = “[* + w.$info.Name + * : * + w.$info.Desc +“";
. } = }
elementif | eseif (modes == “line) { Cime | tmees | meiaii reffile = fopen(filepath$);
active layer vl LineHighlightSingle(2);
is vector vi.Line HighlightSingle(1, 3); The RunAssociated Application start=0;
} : while(!feof (reffile)) { : -
dse{ function launches whatever url$ = fgelines(reffle); determine that active layer
vl.Poly.HighlightSingle(1); application would be used if you Sart+= 1; ' is named in reference file
Vi.Poly.HighlightSingle(1, 3); double-clicked on the file on your if (url$ == layerNames)
) } desktop. If the file name ends in) bresk;
} .doc, it will launch Microsoft Word; if if (url$ 1= layerName$)
proc cbClose() { Close button the file name ends in .pdf, it will list.Addltem(* File not found!”);
pointTool.Managed = 0; .
DialogClose(form); functions launch Adobe Acrobat or Acrobat g

Reader, whichever would be used if
you double-clicked on the file on

if (setDefaultWhenClose) {
setDefaultWhenClose = falsg;

while(!feof (reffile)) {
temp$ = fgetline$(reffile);

retreive URL choices
for the active layer

View.SetDefaultTool (); url$ = url$ + temp$ + “\n";
} your desktop. if (temp$ == *")
} break;
proc cbModeChanged() { }
if (pointButton.Set == 1) { close the ‘
modes = “ point”; folose(reffile); reference file

changesvector

}
elseif (nodeButton.Set == 1) .
¢ " selection mode

mode$ = “node”’;
}

(see urls.sml for full script)

Microl mages, I nc. (402)477-9554 « FAX (402)477-9559 « 206 S. 13th Street, Lincoln, Nebraska 68508-2010 USA « info@microimages.com « October 2000

Sample SML Tool Script

Find Streets

The Find Streets tool script locates and highlights streets
you ask it to search for. You enter al or part of the street
name to search for, and the tool script producesalist of all
streets containing the text you entered. You then select the
street you want to find and the script redraws the view at
1:30000 with the lines that form the street highlighted and
centered in the View window. If al selected lineswill not
fitin theView at 1:30000, the View isredrawn at asmaller
scalethat fully contains the lines.

Pl 58 Seatacf 0078 3]) §] TBORTIE o] SAREE
! !

All linesthat form the street are highlighted. The highlight colorsfor these lines are your designated selected and
active element colors (Options / Colors). You may need to change these colors to take into account the drawing
styles of the vector lines, which are purple, red, or black in thisvector object. Thus, the default red highlight color
could not be distinguished from unhighlighted lines in some
cases. For the purposes of this tool, you may want to set the
active and selected colors to be the same so that the selected
L street hasauniform appearance. Thehighlight color
for theillustrations on this pageis green.

The New Search [LESCENESERIET
button opens a
Prompt window so
you can type in all
or part of the
name of the street
you want to locate.
clok oK and all The name of thetown and the zip code are also pro-
the search criteria are listed. Double-click on the name of the street vided in the list of streetsfound. The scri pt assumes there
you want to find or click on the Highlight the street icon. are not two separate streets in the same zi P code with the
SIGIOEDUTE 7 LewslP? = Legout Tis ; .

same name. If, however, it turns out that the part of the
street name you entered belongs to two different streetsin
the same zip code (one Main Street, the other Main Drive,
for example), only the first encountered is listed but both

are highlighted when that selection is made.

Eicarch (er a stroal ST"1%] The script automatically
pans to the selected street
when you double click on
the listing or click on the
Highlight the streeticon.
The list is cleared when
you click on New Search.

u-_al"ﬁml—"_lnl_ﬂi_--

Tima Ro drea: O Second

o [l Pewr F
5 o

RTE D HYERES

LEC LR
A

._1.--_\\.' "
TR T

Both in 2 P 83047

This custom script requires
the French data sets to run.
It is provided as a sample
script that can be modified
for your own data.

TS e] 5 4] T o] e] 155 ealn: :_p.uw..;—
I "

Tire b drou: €1 Secerd

Note map scale
smaller than

1:30000 to fit all | -
selected in View. | |

VCHE D HYERES

Microlmages, I nc. (402)477-9554 « FAX (402)477-9559 « 206 S. 13th Street, Lincoln, Nebraska 68508-2010 USA « info@microimages.com « October 2000

Macro and Tool Scripts can be created using SML in any TNTmips process that uses a View window (Options /
Customize from the View window menu bar). These scripts are then available from an icon, which you select or
design, on the toolbar. Sample scripts have been prepared to illustrate how you might use these features, which are
available only in TNTmips 6.4 or later, to assist with specific tasks you perform on a regular basis. If possible, the full
script is printed below for your quick perusal. When a script is too long to fit on one page, key sections are repro-
duced below. The sample Tool Script illustrated can be downloaded from the SML script exchange at
www.microimages.com/sml/ftpsmllink/TNT_Products_V6.4_CD.

Partial Script for Find Streets (street.sml)

Zoom to selected position
proc DoZoom () {

#Finding the element numbers of this street (not sure that they are sorted)
local selpos;

if (nline == 0) return; zooms to
selpos = poslist. GetFirstSel ectedPos(); selected
array streetlinef1]; elements
nstreetline = 0;

fori=1tonline{
curcode = V.line[linelist[i]]. TRONCON_ROUTE.INSEE_COMD;
if (curcode == codelist[selpos,1]) {
nstreetline = nstreetline+1;
ResizeArrayPreserve(streetline, nstreetline);
streetline[nstreetline] = linelist[i];
}

}
ViewSetMessage(View, NumToStr(nstreetline) + “ lines found for this street”);

#Zoomin to the lines

class VECTORLAY ERLINES VII;

vl = layer.Line;

vll.HighlightMultiple(nstreetline, streetline);

View.DisableRedraw = 1;

layer.ZoomToHighlighted();

if (ViewGetMapScale(View) < 30000) {
ViewSetM apScal e(View, 30000);

}
View.DisableRedraw = 0;

ViewRedraw(View);
}#DoZoom
New Request .
< clears list,
proc DoNew () { prompts for
poslist.DeleteAllltems();
Hine=0: new search
o street, and
ncoae =0, finds lines

#asking to enter the name of a street (or aword contained in it)
street$ = PopupString(“ Enter all or part of the name of the street to search for”, “”);
if (street$=="") return;

street$ = toupper$(street$);

#looking for aline containing street$ inits NOM_RUE_D or NOM_RUE_G attributes of
the TRONCON_ROUTE table
for i=1 to NumVectorLines(V) {
#class DATABASE DB = V.line[i]. TRONCON_ROUTE;
if (V.line[i]. TRONCON_ROUTE.NOM_RUE_D$ contains street$ or
V.line[i]. TRONCON_ROUTE.NOM_RUE_GS$ contains street$) {
nline=nlinet+1;

linelist[nline] =i;

#f
14 ’ reports total
ViewSetM essage(View, NumToStr(nline) +* lines found"); number of
o) lines found by
if (nline==0) { #no element corresponding found h

PopupM essage(“ No streets found containing thisword!”); searc

return;
}

#Some streets are found : find the different ones (by zip code)
#Assertion : not 2 streets with the same name in atown
#Limits: don't take into account the streets separating 2 towns (the right zip code
INSEE_COMD and the |eft one INSEE_COMG are different)
fori=1tonline{
found = false;
curcode = V.ling[linglist[i]]. TRONCON_ROUTE.INSEE_COMD;
=L
while (found and j<=ncode) { #looksif code aready found
if (codelist[j,1] == curcode) {
found = true;
yif
i=it
}#while
if ('found) { #new street
ncode = ncode+1;
codelist[ncode,1] = curcode;
codelist[ncode,2] = linelist[i];
yif
Y

}#DoNew

#Retrieve the table containing the names of the towns

array townnames{ncode]; #V Town.point[townname[i]].ZONE_HABITAT.INSEE ==
V.line[codelist[i,2]]. TRONCON_ROUTE.INSEE_COMD;

npts = NumVectorPoints(V Town);

ResizeArrayClear(townnames, ncode);

for i=1 to ncode {
curcode = V.ling[codelist[i,2]] TRONCON_ROUTE.INSEE_COMD;
=1
found = false;
townnames[i] = 0; #init
while (!found and j<=npts) {
if (VTown.point[j].ZONE_HABITAT.INSEE == curcode) {
townnames[i] =j;
found = true;
}
i=j+

}

if (townnames]i] == 0) { #error
PopupM essage(“ Town name corresponding to “ +
NumToStr(curcode) + “ not found”);

Y

for i = 1 to ncode {
name$ = V.ling[codelist[i,2]]. TRONCON_ROUTE.NOM_RUE_D#$;
zip$ =" (“ + NumToStr(codelist[i,1]) +“)";
town$="“,“ + street$ =
toupper$(V Town.point[townnames[i]]. ZONE_HABITAT.TOPONY ME$);
poslist. Additem(name$ + town$ + zip$);

}
poslist.SelectPos(1);

Close the window, switching to default tool

proc DoClose () {

}

closes search
window and acti-
vates default tool

if (setDefaultWhenClose) {
setDefaultWhenClose = false;
View.SetDefaultTool ();

Called thefirst time the tool is activated.

func Oninitialize () {

digform = CreateFormDialog(“ Search for a street”,View.Form);

WidgetAddCallback(dlgform.Shell.PopdownCallback,DoClose); creates
digform.Width = 200;

grorm- search
class PushButtontem btnltemNew; dialog

class PushButtonltem btnltemZoom;

btnltemNew = CreatePushButtonltem(“ New search” ,DoNew);
btnltemNew.lconName = “new”;

btnltemZoom = CreatePushButtonltem(* Highlight the street”,DoZoom);
btnltemZoom.lconName = “apply_query”;

btnltemClose = CreatePushButtonltem(* Close” ,DoClose);
btnltemClose.lconName = “delete”;

Icon button rows are automatically attached to their parent form on the left
#andright. The“right” widget is unattached by setting the attachment to itself.

class XmRowColumn btnrowaction;

btnrowaction = Createl conButtonRow/(dl gform,btnl temNew,btnltemZoom);
btnrowaction. TopWidget = digform;

btnrowaction. TopOffset = 4;

btnrowaction. L eftWidget = btnrowaction;

btnrowaction.LeftOffset = 8;

btnrowaction.RightOffset = 4;

class XmSeparator btnsep;

btnsep = CreateHorizontal Separator(digform);
btnsep. TopWidget = btnrowaction;
btnsep.TopOffset = 4;

btnsep.LeftWidget = digform;
btnsep.RightWidget = digform;

poslist = CreateScrolledList(dIgform);

(see street.sml for full script)

Microl mages, I nc. (402)477-9554 « FAX (402)477-9559 « 206 S. 13th Street, Lincoln, Nebraska 68508-2010 USA « info@microimages.com « October 2000

@i E] == 28RS QRS QUS| b B o S

=

flow path wit
buffer zone

iz
248906.22 n

1.0 Scale: 4166902,73 w+

119260 | =] §

Vieu: |

Tine to draw: 1 Second I

Use the Save button to save the JEla M s b e eI«

computed watershed features\H,ﬂﬂz,
as vector objects in a Project |F Flou Path

File. 17 Upstrean Basin
/ 7 Buffer Zone
Buffer Distance

200

Sample SML Tool Script
Yiew Tool Legend¥iew GPS5 Options /'\ Help h—

Flow Path

The Flow Path sample script shows how powerful custom
analysis procedures can be performed on layers in the
current view using an SML Tool Script. The script uses
new SML watershed functions that operate on an eleva-
tion raster (DEM) in the View window. When you launch
the script, it opens a FlowPath and Buffer Zone window
and creates a graphic tool that allows you to place a wa-
tershed seed point on the DEM or on an overlying image
layer. Depending on the options you have selected in the
FlowPath window, the script computes and displays the
upstream basin (area with flow toward the seed point),
the flow path downstream, and a buffer zone around the
flow path. You can move the seed point and repeat the
analysis as many times as you like and save the computed
elements at any time.

One application of this script is the evaluation of surface
water pollution hazards. If the seed point represents a
location where contamination has been detected, the up-
stream basin is the area of potential sources. If the seed
point represents a contaminant spill, the flow path and buffer
zone indicate the downstream area that is at risk.

MmE3
Help

EGroup 1 - Group Yiew 1

¥iew Tool LegendYiew GPS Options

Use the toggle buttons to
choose which watershed
features you want computed
and displayed.

Flowpath Color
Buffer Color

Basin Color

blue
yellow

green

Border Color |red

If the Display group

has more than one Group Layer Options

= Group 1 = Group Controls

layer, make sure
that the elevation

- ; @ B - & b Band3_lg, Band2_lg, Bandl_lg
raster is the first

@ B - ofo 3 THP_DEHL

(0 23]] e o) 5 3 7

layer in the group |5

when you run the

Flow Path Tool
Script. Inthe example to the right, an RGB raster layer showing
a natural-color satellite image is displayed on top of the DEM.
The extents of the DEM layer are computed by the script and
displayed as a red rectangle. Use this rectangle as a guide to
placing seed points when the overlying image extends beyond
the DEM layer in one or more directions.

Development of this and other sample Tool Scripts continues
at Microlmages. Check the Microlmages web site for an
updated version incorporating additional features.

@mEl -2 o282 QICHE @

£

| R B 5) B 27

¥

View:| 1.0 Scale:| 152479 ¢|[+] §| 4166107.66 o 24828376 n

Tine to draw; 2 Seconds I

Microlmages, Inc. (402)477-9554 « FAX (402)477-9559 « 206 S. 13th Street, Lincoln, Nebraska 68508-2010 USA « info@microimages.com « October 2000

Macro and Tool Scripts can be created using SML in any TNTmips process that uses a View window (Options /
Customize from the View window menu bar). These scripts are then available from an icon, which you select or
design, on the toolbar. Sample scripts have been prepared to illustrate how you might use these features, which are
available only in TNTmips 6.4 or later, to assist with specific tasks you perform on a regular basis. If possible, the full
script is printed below for your quick perusal. When a script is too long to fit on one page, key sections are repro-
duced below. All sample Tool and Macro Scripts illustrated can be found in their entirety on your TNT products CD-
ROM in the folder in which you installed TNTmips 6.4. These scripts, among others, can be downloaded from the SML
script exchange at www.microimages.com/sml/ftpsmllink/TNT_Products V6.4 _CD.

Script for Flow Path

array seedx[10];
class WATERSHED w;
class RASTER DEM;

array seedy[10];
numeric numpts;
numeric firstpass;

variable
declarations

class POINT2D pt;

class VECTORLAYER VecBuf;

class VECTORLAYER VecFlow;

class VECTORLAYER BasinLayer;
class VECTORLAYER BoundaryLayer;
class VECTOR VecBoundary;
numeric xMax,yMax,xMin,yMin;

class PointTool point_tool;
class RasterLayer DEMLayer;
numeric haslayers;
class XmForm dlgform;
class VECTOR Vectin;
array xPoints[10],yPoints[10];
class PromptNum PromptDistance;

func Onlinitialize() {

if (Group.FirstLayer.Type == “Raster”) {
DispGetRasterFromLayer(DEM,Group.FirstLayer);
DEMLayer = Group.FirstLayer;
}

else {
PopupString(“First Layer must be a raster object for Watershed

Toolscript”);

WaitForExit();
}

demFilename$ = GetObjectFileName(DEM);
deminode = GetObjectNumber(DEM);
demObjname$ = GetObjectName(demFilename$,deminode);

is called the first
time the tool is
activated

initializes watershed
object (w); compute
depressionless DEM

w = WatershedInit(demFilename$,demObjname$);

WatershedCompute(w,"FillAllDepressions”);

firstpass = 1; haslayers = 0; numpts = 1;
digform = CreateFormDialog(“FlowPath and Buffer Zone”,View.Form);

WidgetAddCallback(dlgform.Shell.PopdownCallback,DoClose);

class PushButtonltem btnltemSave;
class PushButtonltem btnltemRemove;
class PushButtonltem btnltemSet;
class PushButtonltem btnltemClose;

creates “FlowPath
and Buffer Zone”
dialog window

btnltemSave = CreatePushButtonltem(“Save Output Layers...",DoSave);

btnltemSave.lconName = “save”;

btnltemRemove = CreatePushButtonltem(“Remove Output Layers”,
cbDoRemove);

btnltemRemove.lconName = “remove_sel”;

btnitemSet = CreatePushButtonltem(“Set Number of Seedpoints...”,
DoSet);

btnltemSet.IconName = “apply”;

btnlitemClose = CreatePushButtonltem(“Close”,DoClose);

btnitemClose.lconName = “delete”;

class XmRowColumn btnrowaction;

btnrowaction = CreatelconButtonRow(dlgform,btnitemSave,
btnltemRemove,btnltemSet,btnitemClose);

btnrowaction.TopWidget = dlgform;

btnrowaction.RightWidget = dligform;

btnrowaction.LeftWidget = digform;

class XmToggleButton btnFlow;
class XmToggleButton btnBasin;
class XmToggleButton btnBuffer;

btnFlow = CreateToggleButton(digform,”Flow Path”);

btnBasin = CreateToggleButton(dlgform,”Upstream Basin”);

btnBuffer = CreateToggleButton(digform,”Buffer Zone”);

PromptDistance = CreatePromptNum(digform,”Buffer Distance”,
5,0,100);

btnFlow.Set = 1; btnBasin.Set = 1; btnBuffer.Set = 1;

btnFlow.TopWidget = btnrowaction;

btnFlow.LeftWidget = digform;

btnBasin.TopWidget = btnFlow;

btnBasin.LeftWidget = digform;

btnBuffer. TopWidget = btnBasin;

btnBuffer.LeftWidget = digform;

PromptDistance. TopWidget = btnBulffer;

PromptDistance.LeftWidget = digform;

class XmSeparator btnsep;
btnsep = CreateHorizontalSeparator(digform);

(FlowPath.sml)

btnsep.TopWidget = PromptDistance;
btnsep.TopOffset = 4;
btnsep.LeftWidget = digform;
btnsep.RightWidget = digform;

class PromptStr Promptflow;
class PromptStr Promptzone;
class PromptStr Promptbasin;
class PromptStr Promptborder;

Promptflow = CreatePromptStr(digform,”Flowpath Color”,15,"blue”);

Promptzone = CreatePromptStr(digform,”Buffer Color “,15,"yellow”");
Promptbasin =CreatePromptStr(digform,”Basin Color “,15,"green”);
Promptborder=CreatePromptStr(digform,”Border Color “,15,"red");

Promptflow. TopWidget = btnsep;
Promptflow.TopOffset = 4;
Promptflow.LeftWidget = dlgform;

Promptzone.TopWidget = Promptflow;
Promptzone.LeftWidget = digform;

Promptbasin.TopWidget = Promptzone;
Promptbasin.LeftWidget = digform;
Promptborder. TopWidget = Promptbasin;
Promptborder.LeftWidget = digform;

} # end of Onlnitialize

computes flow path,
buffer zone, and basin
originating at seed point
(depending on options

proc DoFlowPath() { selected in dialog)

View.DisableRedraw = 1;

if ((btnFlow.Set == 0) and (btnBuffer.Set == 0) and
(btnBasin.Set == 0)) {
return;
}
if ((btnFlow.Set == 1) or (btnBuffer.Set == 1) and
(btnBasin.Set == 1)) {
WatershedComputeElements(w,seedx,seedy,numpts,”FlowPath,Basin”);
}
if ((btnBasin.Set == 1) and (btnBuffer.Set == 0) and
(btnFlow.Set == 0)}{
WatershedComputeElements(w,seedx,seedy,numpts,”Basin”);
}
if (btnBasin.Set == 0) {
WatershedComputeElements(w,seedx,seedy,numpts,”FlowPath”);

}

if ((btnFlow.Set == 1) or (btnBuffer.Set == 1)) {

WatershedGetObject(w,"VectorUserFlowPath”,userflowpathFilename$,
userflowpathObjname$);

OpenVector(Vectin,userflowpathFilename$,userflowpathObjname$);

}

if (btnFlow.Set == 1) { adds flow path vector to view

VecFlow = GroupQuickAddVectorVar(Group,Vectin);
VecFlow.Line.NormalStyle.Color.name = Promptflow.value;

}

if (btnBuffer.Set == 1) {
CreateTempVector(Buffer);
CreateTempVector(TempBuffer);
TempBuffer = VectorToBufferZone(Vectin,”line”,

PromptDistance.value,”meters”);

Buffer = VectorExtract(VecBoundary, TempBuffer,”InsideClip”);
VecBuf = GroupQuickAddVectorVar(Group,Buffer);
VecBuf.Line.NormalStyle.Color.name = Promptzone.value;

}
if (btnBasin.Set == 1) { adds basin vector to view

WatershedGetObject(w,"VectorUserBasin”,userBasinFilename$,
userBasinObjname$);
OpenVector(BasinVector,userBasinFilename$,userBasinObjname$);
BasinLayer = GroupQuickAddVectorVar(Group,BasinVector);
BasinLayer.Line.NormalStyle.Color.name = Promptbasin.value;

computes optional buffer zone
around flow path and add to view

}

BoundaryLayer.Line.NormalStyle.Color.name = Promptborder.value;
View.DisableRedraw = 0;

ViewRedrawlfNeeded(View);

haslayers = 1;

} # end of DoFlowPath

Microlmages, Inc. (402)477-9554 « FAX (402)477-9559 « 206 S. 13th Street, Lincoln, Nebraska 68508-2010 USA « info@microimages.com « October 2000

Sample SML Tool Script
Running FraGsTats With TNTmiIps

£E The patch, which is the basic unit of landscape ecology, is a
= piece of the landscape that is considered homogeneous at the
scale of aparticular study. A landscape, or area of interest, is
amosaic of patches of different types. Patch typeisequiva
lent to a class in TNTmips terminology (patches of a single
type in the landscape belong to the same class).

EGroup 1 - Group Vieu 1

View Tool LegendView GPS Options

@|w| g += |2 R|2I2QUSHRE 25 h 5] | % As

2 FEATURES1 _ — _ o
&

[=

- classd
l:l classh
- draine|

In order to study landscape function and change, you need to
be able to quantify landscape structure. The FRAGSTATS pro-
gram was devel oped for this purpose by Kevin McGarigal and
BarbaraMarks. FracstaTs cal culates anumber of statisticsfor
each patch, for all the patches of a single class, and for the
landscape as a whole. FraGsTATS is concerned with both landscape composition and landscape configuration.
Landscape composition addresses the variety and abundance of patches within the landscape, while landscape
configuration is concerned with physical distribution and spatial character of patches.

-1 = H T
view:| 1,0 Scale:| 553 | = 4 180,50 =] 360,50 n

FRAGSTATS runs under pos and outputs four files, each with the name you provide and a different extension (*.cla,
* ful, *.Ind, *.pat). Becauseit runs under pos, output file names are restricted to eight characters. Three of these
files are designed for direct database import from text while the fourth file
(*.ful) combines information on individual patches, patch classes, and the T e =1 [77 &[] #| Al
landscape as awhole into asingle, more humanly readable report. nterior Backavound Ualue: 32071

"2 Finished Select - /tnt/win32/FRAGSTAT

Interior Background Value: 32871
xterior Background Ualue: -32871

.. 239279 cells of background exterior to the 1

Two separate scriptsfor running FRAGSTATSs are available with this rel ease of

. . . . lass i 4732 cells, 9 patches
the TNT products. Oneisatool script that letsyou draw aregionto define fizss % i cellss 38 patcpes
. . . . lass EH 279 cells, 21 patches
the area of the underlying raster to use for calculation of statistics. The fiess — 6: 10533 cells! 57 patches

umber of classes: 5

ax patchesrsclass: 181

ax_patch_size: 232279 (hackground-border patch?
erifying that background patches are classified

other script isrun through the SML process and requires the landscape ras-
ter and a mask raster to define your area of interest within the landscape.
The FracsTATS tool script demonstrates that atool script can run an external
program using objects from TNTmips Project Files and that FRAGSTATS can
be used with an interactively designed mask (aregion).

—
&
7]
]

O L BN

Once you have drawn and applied your region (or selected both the landscape and mask raster), you are asked to
supply an edge distance in meters. The edge distanceisthe setback
distance (in meters) within each patch for the purpose of calculating
m coreareametrics. Next, apos shell opensand reports progresswhile
¢/ FracsTaTsisrunning. When FracstaTsisdone, the pos shell will say
finished in the title bar. You need to close the pos shell in order to
continue working in TNTmips Spatial Data Display process. The
amount of time it takes FracsTaTs to run is determined by the num-
ber of cellsselected for processing and the number of patcheswithin
the selected area.

The information shown in the multiline DataTip (left) was selected
from the table that resulted from import of the .clafile produced by

EGroup 1 - Group Yiew

Yiew Tool LegendYiew GPS Options

elii0) - Sl2IRIRTIRE QUIW ==& (s]

; 2} y 3"
B at.cl ;

]
vieu:| 1.0 Scale:|

290,98 ++|

5142 m@a H|

Summary statistics for each patch type were imported to

a database related to the landscape raster by cell value.
A multiline DataTip that incorporates specific statistics of
interest (from the 40 in the *.cla file) was then
constructed using a string expression field.

FRAGSTATS. The imported table can be related to the internal table
using cell value (Internal.Value), which corresponds to the patch
type in the FRAGSTATS output.

Microl mages, I nc. (402)477-9554 « FAX (402)477-9559 « 206 S. 13th Street, Lincoln, Nebraska 68508-2010 USA « info@microimages.com « April 2001

Macro and Tool Scripts can be created using SML in any TNTmips process that uses a View window (Options /
Customize from the View window menu bar). These scripts are then available from an icon, which you select or
design, on the toolbar. Sample scripts have been prepared to illustrate how you might use these features, which are
available only in TNTmips 6.4 or later, to assist with specific tasks you perform on a regular basis. If possible, the full
script is printed below for your quick perusal. When a script is too long to fit on one page, key sections are repro-
duced below. The sample Tool Script illustrated can be downloaded from the SML script exchange at

www.microimages.com/sml/ftpsmllink/TNT_Products_V6.5_CD.

Script for Running Fracstats on RVC Data (fragtool.sml)

class XmForm form, buttonRow;

class PushButtonltem closeButton; X
class MdispRegionTool tool; Va”able_
class Raster targetRaster; declarations

class LAYER rasterLayer;
string rasterName$, frag$;
class XmDrawingArea da;

class GraphicsContext gc;

func checkLayer() {
local boolean valid = false;
Get name of active layer if it isusable. If not output an error message.
if (Group.Activel ayer.Type == “Raster”) {
rasterLayer = Group.ActivelLayer;

checks to see
if active layer
is a raster of
valid type for
FRAGSTATS

DispGetRasterFromL ayer(targetRaster, rasterL ayer);

if (targetRaster.$Info. Type == “32-hit float” or targetRaster.$Info. Type ==

rasterName$ = “Type not supported!”;
}

else{
rasterName$ = rasterLayer.Name;
valid = true;
}

}

else

rasterName$ = “Not araster!”;
return valid;
}

proc chRedraw() {
if (gc == 0) return;
ActivateGC(gc);

draws text
in Fragstat
window

SetColorName(“gray75");

FillRect(0, 0, dawidth, daheight);
SetColorName(* black™);
DrawlInterfaceText(rasterName$, 0, 12);
}

proc cbLayer() {
checkLayer();
cbRedraw();
}

proc chTool Apply(class RegionTool tool) {
if (checkLayer()) {
:(ﬁ rflagionSt My';gn: gl sets local
class StatusHandle status; .
local class StatusContext context; variables
local numeric lins, cols, csize, edist, value;
string type$, tempFile$, fragout$;

check new

active layer
if changed

status = StatusDial ogCreate(form);
context = StatusContextCreate(status);
StatusSetM essage(context, “Running fragstats...”);

creates
status bar

MyRgn = tool.Region;
MyRgn = RegionTrans(MyRgn, ViewGetTransViewToScreen(View, 1));

“64-bit float”) {

procedure
when region
applied

MyRgn = RegionTrans(MyRgn, ViewGetTransLayerToView(View, rasterLayer, 1));

lins= NumLins(targetRaster);
cols = NumCols(targetRaster);
tempFile$ = CreateTempFileName();

fragout$ = GetToken(GetOutputFileName(_context.ScriptDir, “Where would you like the results?”,

)"0y
csize = (LinScale(targetRaster) + Col Scale(targetRaster)) / 2;
edist = PopupNum(“ Enter the edge distance in meters:”);
value = 32071;

writes to text file
forrow=0tolins- 1step1{

for column=0tocols- 1step 1{
if (PointlnRegion(row, column, MyRgn)) then {
fprintf(outFile, “%d “, targetRaster[row, column]);

outFile = fopen(tempFile$);

applies the

fclose(outFile);

closes output file

run(sprintf(“ %s %s %s %d %d 2 %d %d %d $$$$ Sy y y yy”, frag$, tempFile$, fragout$, csize,

runs FRAGSTATS

edist, lins, cols, value), 1);

DeleteFile(Rout $info Filename); |deletes
DeleteFile(tempFiles); temporary files

StatusContextDestroy(context);
StatusDial ogDestroy(status); CI_OseS Status
} window

€lse PopupM essage(rasterNames);

}

proc chClose() {

tool.Managed = 0; actions when

DiaogClose(form);

if (setDefaultWhenClose) { C|F)S€ FragStat
setDefaultWhenClose = false; window
View.SetDefaultTool ();
}

}

func Oninitialize () {

WidgetAddCallback(Group.L ayerSelectedCallback, cbLayer);

form = CreateFormDialog(“ Fragstat”);

form.marginHeight = 2;

form.marginWidth = 2;
WidgetAddCallback(form.Shell.PopdownCallback, cbClose);

da = CreateDrawingArea(form, 15, 400);
datopWidget = form;

daleftWidget = form;

darightWidget = form;
WidgetAddCallback(da.ExposeCallback, chRedraw);

line= CreateHorizontal Separator(form);
line.topWidget = da;

lineleftWidget = form;

linerightWidget = form;

line.topOffset = 2;

closeButton = CreatePushButtonltem(“ Close”, chClose);

buttonRow = CreateButtonRow(form, closeButton);
buttonRow.topWidget = line;

buttonRow.|eftWidget = form;
buttonRow.rightWidget = form;
buttonRow.bottomWidget = form;

tool = ViewCreatePolygonTool (View);
Tool AddCallback(tool . ActivateCallback, chTool Apply);

frag$ = GetInputFileName(“ c:/tnt/win32/fragstats.exe”, “ Please locate the fragstat executable.”, “

} #end of Onlnitialize

func OnDestroy () {

tool.Managed = O;

called first time

tool is activated,
creates windows
and asks user to
locate FRAGSTATS
executable

DestroyGC(gc);
DestroyWidget(form);
} #end of OnDestroy

called when tool
is destroyed

func OnActivate () {

checkLayer();

tool.Managed = 1;
tool.HasPosition = 0;
DialogOpen(form);

called when tool
is activated

if (gc==0)
gc = CreateGCForDrawingArea(da);
cbRedraw();
setDefaultWhenClose = true;
} #end of OnActivate

}
else fprintf(outFile, “%d “, -value);

region for use
iN FRAGSTATS

func OnDeactivate () {

setDefaultWhenClose = false;

chClose();

called when tool
is deactivated

exe’);

if (row !=lins- 1)
fprintf(outFile, “\n");
}

} #end of OnDeactivate

Microl mages, | nc. (402)477-9554 « FAX (402)477-9559 « 206 S. 13th Street, Lincoln, Nebraska 68508-2010 USA « info@microimages.com « April 2001

Sample SML Tool Script

Printing Fixed Colors

The compar.sml script provides an exampl e that . > —T——T—
can be used and modified to assign colors to _ ' ¥
cell values in an 8-bit raster in a quantitative
fashion. If your printer iscolor stable, you can] = -
determine which numerically input RGB color Commands are entered

Enter Comnand: pr 20,20,1

Status: ILIa iting

value produces the exact color required. This 3 ; one at a time. The status
script will then let you specify a cell valuein : the previous command.
your input raster and assign it a precise RGB R :

color inthe associated color palette. Thescript Seasisr " o N py— Layer Controls
waswritten for someonewho wanted afast way AR T o g window / Contrast to None.
to assign aspecific color toeach classinacles) - IR R 1/orai < e cpiayed colors
sified image. Assuming your color printer S : i o do not match the color palette.)

does not drift in color, this approach will en-
sure that each class is printed in a consistent
color from raster to raster. This script also il-
lustrates how user input is parsed.

When you select this tool, a Command Parser
window opensfor you to enter commands. The
paint commands require you to specify acolor with a color number. The script 1ooks up the color number in a specified text
file, which contains sequential color numbers (called index numbers) from 0 to 255. Each index number hasred, green, and
blue color component percentages aswell as atransparency value. You can create thisfile from any raster’s color palette by
using thet command. Edit thisfile or even create it from scratch using atext editor or spreadsheet program. Depending on
the command you enter, the script can copy these colors all at once to araster’s color palette (Ic command) or load them (b
command) if you want to access colors individually in order to paint specific raster cells (p and pr commands).

The best way to find the index number of a color (or aclass represented by that color) isto make a standard color chart you
can refer to. A color charts makes it easy to use any number of color shades to represent unique classes. All you have to
doisrefer to the chart, find the index number of the color you need, and use the compar.sml tool to paint al corresponding
raster cells. The color chart is even more important when you have alarge number of features to classify and you have no

- : choice but to use similar colorsfor different feature classes. Even with
a few classes, subtle but noticeable changes in brightness and shade
View Tool LegendView GPS (Options are an attractive and effective way to convey information about one
@D = 28 SRE [SINIEISE class relative to another. There are many ways to create a color chart;
Woody O Energent owIntersity 2 the simplest is to list al of your color numbers along with the feature
Her baceous Resi denti al &si dert i al . .
Wet! ands Wetl ands classesthey correspondto. Thechart totheleft wascreatedin TNTmips.
Before painting a raster, enter the b command to load the text file that
Forbaceous D contains the index numbers and color component percentages for all
Pl anted cul ti vet ed your colors. Use the p and pr commands to paint the raster. All you
urbary recreat i onal .
G asses need to know to use these commands is the color number correspond-
ing to Fhe
class, which Commands with sample variables:
CLASS: Ener gent)
Her baceous Vit | ands you can get t (outputs color palette to text file) .
Qo # (ink): 1 from your Ic (make a new SMLcolor palette from text file)
Red: 100% color chart, b (load text file colors to use to paint)
G’egn: 0 2/0 and the corre- 10,255 (cell value 0 to 255 becomes transparent)
I _ Yt sponding cell pr.0,20,1 (paints range of cell values 0 to 20 with color # 1)
Transparent : 0% al h i)
e — valuesthal you 212 (paint cell value 21 with color # 2)
Bare Rock 20 Qarries 21| Trastiod 22 want to pal nt.

Microl mages, I nc. (402)477-9554 « FAX (402)477-9559 » 206 S. 13th Street, Lincoln, Nebraska 68508-2010 USA « info@microimages.com « April 2001

Sample scripts have been prepared to illustrate how you might use the features of TNTmips’ Spatial Manipulation
Language (SML). Key sections of the script are printed below for your quick perusal. The entire script can be down-
loaded from the SML script exchange at www.microimages.com/sml/ftpsmllink/TNT_Products_V6.5_CD.

Excerpts from Command Parser Tool Script (compar.sml)

proc Qut put @i or Map() {
if (Goup. Activelayer .Type ="“Rester”) {
D spGet Rast er i onhayer (rast, G oup. Acti velayer);
cnap = @l or MapFr onfRast Va(ra); to CSV file
if (crap.nane ="") { Command Syntax: t

OutputColorMap called
when t command entered;
copies color map in Raster|

PopupMissage(“No @ orMp vas found inraster ogect Paint functi on

aortedn e lccomandtosae acsv fileasacdampinthe raster

djet first\na ceteaeyorsd f”);

Gnmand. val ue = “";

Satus. va ue =“ Qi put G or\p aborted’;

reun Opens Select File window for
} / you choose the output file name

nyfile=GtQtputTetRlg“c/da.cv,"Hed filefa atpt:” ,“csV');

fprintf(nyfile “9,9,9,9%,%\n",“Index’, “Red’, “Geen’, “Bue’,
“Transparercy”); _

fsam_(\ﬁ“% Qtptting @ armag’; Returns the color at index

ai=0toZh{ ‘i"in color palette ‘cmap’

nycol or = Gl or MpGet @l or (cnap, i) ;

fprintf(nyfile "%, %, %, %, %6\n", i, round(nycd or .rej,
round(nycol or . green), round(nyca or .Hw8),
round(nycadl or .trag));

} fprintf output the CSV file, example:
fd 039('”5'“ | e); Iondex ged oneen glue ;éansparem:y
Sﬁw-vd;ef‘morrmwmted': > ok w ow
Gnmand. v: ue:“";

Lse . w wo w we iw
Saws.vd ue =“Active Layer nost be araster wed arnap for this fuctiod’;
Gormand. val ue =*";

}

} Paint procedure invoked when p command entered; sets
‘cellvalue’ in color palette to ‘index’ value in array
prec Rirt() { Command Syntax: p,cellvalue,index

i f (Nunber Tokens(Gnmand. val ue, delim !'=3) {
Saus.va ue =“Not enough paraneters for Rant functi of’;

reun
} ‘hascolorarray’ is initially set to false; when b command
if (Ihesod aarray) { | (SetColorArray function) is executed it is set to true
PopupMssage(“ Use code b (St @l or Aray function) to | oad a col ornap
towsefirgd”);
Sauws.vde="Rin fuctionaworted’;
Gnmand. val ue = “";
reun

}
locd nunaric cdlvd g
locd nuneric cd or nunher;
cd | vel e = SrToNun{ Get Token(Grmand. val ue, del i m2));
cal ornuniber = S r ToNun{ Get Token(Gonmand. val ue, del i m3));
if (Gowp. Activelayer . Type!="Rster”) {
Popuphssage(“Acti ve Layer nost be araster dject for this fuxtiat);
Gonmand. val ue = “";
Sauws. vdue ="Ativelaer nst bearaster”
reun

|Gets Raster ‘rast’ from active Iayerl

}
D spGet Rast er i onhayer (rast, G oup. Acti velayer);
cnap = @l or MipFr onfRast Ver(ra); Returns Raster's color palette
if (crap nene =) { L)\L palette]
Popuphssage(“No @l orMp vas found inraster o ect Raint function
aortedn e lccomandtosae acsvfileasacdanapinthe raster
djet first\na ceteaeyorsd f”);

Gonmand. val ue = “";

Sauws.vde=“Rn fuctionaorted dborted’;

reun

} array variables (ared, agreen, ablue,

nycol or .red = ared cd or nunier +1] ;
nycol or . green = agreen cd or nunier +1] ;
nycol or . bl ue = abl ugf cd or nuniber +1] ;
nycol or . transp = at ransp] cad or nunier +1] ;

& atransp) hold paint values;
‘colornumber’ can be 0-255; you must
add one since the array holds colors
1-256 (SML arrays startat 1)

@l orMpS:t @ or (cnap, cel | val ue, nycal or) ; Sets a color palette color

ColorMapSetColor(colormap,index,color)

}

proc Load@®l or Mip() {

Writes a color palette under a raster
ColorMapWriteToRastVar(Raster,colormap,Name$,description$)

Col or MapWiteToRast Var (rast , cnap, cnap. Nane, cnap. Desc) ;

View D sadl eRedraw=1;

Layer Dest roy(G oup. Act i velayer);

G oupQui ckAddRast er Var(Goup rast);
Goup. Activelayer . Al onDd etelayer =1;
View D sabl eRedraw=0;

Vi ewRedr aw(Vi ewy;

*| These six lines of code
force raster to reload
with edited color palette

Saw.vde="Gl Rinea’;
Gonmand. val ue = “";

LoadColorMap procedure invoked when Ic command is
entered; creates a new color map for the Raster
Command Syntax: Ic

lad grirglire

nwile=Gilm1Te¢wa GlaMpfile, "cv);
| Opens Select File window for
|Checks to see if the input file is valid:| you choose the input file name
lire=foetlire{myfil e);
if ((NunberTakers(ling”,”) 1=5 || (“IndeX’ '=GTde(lire “,” ,1)) {
PopuphMssage(“Thi s does not appear tobe avaid cd ornap csv filein
The proper fornat is one rovd 1abe s then 256 \muneric lines of the
formred geen b ve trasp \nviere red, geen b ug trasp are inthe range
0-100\nDsplay araster wtha cd ornap a ready ad use the t comnand to
equt thecdamaptoafiletosee honthefile shaddlok’);
Sauws.vde="Ftd Bro @ oMploed hdted
Gonmand. val ue = “";
reun

}
Satus. va ue =“Load ng @l ornayg’;

CIRY e T
lire=foatlind{nyfil g);
|Additional checks to see if the input file is valid:|
if ((i >0 & (SrToNun(Get Te(lire “,”,1)) =0) {
PopupMessage(“Bad | ndex Val ue Encourtered viil e | oading Gl orMp fil e
@l orMp | ced aborted’);
Sauw.vdue="Ftd Bror Gl aMploedhdted
Gnmand. val ue = “";
reun

GetToken(string$,

delimeters$,tokenNumber)
gets a token, which is al
delimited portion of a string

}

nycol or .red=SrToNun{ Get Tda(lire “,” ,3);
nycol or . green = SrToNun{ Get Tdea(lire “,” ,3);
nycol or .H ue =SrToNun{ Get Tdat(lirg “,” ,9);
nycol or .transp =SrToNun{ Get Tdelire “,” ,9);
Q@ or MpSet @l or (cnap, i, nyca or);

}
if (Gowp. Activelayer . Type!="Rster”) {
Popuphssage(“Acti ve Layer nost be araster oy ect for this fuxtiat’);

Gormand. val ue =*";

Sas. vd e ="Ativelayer nst bearaster” _lwrites new color palette

reun called SMLcolor for Raster;

} ColorMapWriteToRastVar(
D spGet Rest er Fr onhayer (r ast+ Raster, colormap, name$,
Col or MapWiteToRast Var (rast, cnap, " Med o”,” | description$)

@l orMp created by SMLscript”);

code to force raster to reload with new color palette is not
shown (*see identical lines of code in Paint procedure)

Sa s Vd ue =“Ql orMp saved as Mlcd or inraster oy ect”;

PopupMessage(“ @l or nap vas saved as a SMLcol or col or nap under raster
ohj ect\nyou nost sl ect this cd arnap to see the changes\nif you vere d splaying
trereste wthadf feret cdomapnThisisthe aly fuctionthet behaves th s
vay\rA | other functi on nadi fy the nast recent!y used cad ornag’);

Gormand. val ue =*";

global variables declared outside of these procedures
class RASTER rast; class FILE myfile; array ablue[256];

class ColorMap cmap; array ared[256]; array atransp[256];

class Color mycolor; array agreen[256]; numeric hascolorarray;

Microl mages, I nc. (402)477-9554 « FAX (402)477-9559 « 206 S. 13th Street, Lincoln, Nebraska 68508-2010 USA « info@microimages.com « April 2001

Localizing SML Scripts

SML diaogs, including Macro and Tool Scripts, should conformto
the samelanguage astherest of your interface. Thetext stringsfor
dialog boxesand other interface components of any SML script can

be customized to your own language.

Inthisexample, an SML tool script dialog ischanged from English
to French. The new French version of the tool can then be made
availablein the sampleatlas of France and have the samelanguage adting the ted string ina fudion in the tad saipt:
astherest of thedialog. The Find Streetstool (street.sml) letsthe @ eat eFor i al og(“Search for a street”, M ew Forn)
user enter astreet name and then zoomsin on and highlights any match- 7 '
ing streets found in a specific vector attribute table. To update the lan-

== New Search

The titlebar of this wndow was changed to French by

Q eat eFor nD al og(“ Recher che d' une rue”, M ew Form)

guage of all interface components, open the SML tool script in an editor and examine and change any functionsthat
affect text in the interface. The Tool Tips for the icon buttons in the Search for a street window shown above are
specified by string parametersin two CreatePushButtonltem functionsin the script. Any Create function should be

examined and their text stringsreplaced. Some other func-

tions with text strings to look for include: Popup functions Text strings that were changed

(like PopupString and PopupM essage), print, fprint, sprint,
SetStatusM essage, StatusSetM essage, and ViewSetM essage.

= Query Edikor
Seripk Edik

For Micro and Tod Sripts, usethe Hit
ioninthe Qustonize Tod Kripts w ndow
| to open the Query Hlitor. Qher SM
scripts can be edted inthe Satia Mr
M nipul ation Language editor: Process / S\ML
i} / Eit / Ale/ Qen/ *.9\LFle)
Choose HIt/ Arda A nd Again to search
the script for key words such as portions
Yi Irisart Filg.-. of function nanes, character strings you
] know exist, or even doubl e quote char-
F Fimd. .. acter to find text strings thet appeer in

8 Calleafind fgain... e L N

Fune Onindtialize (3 [
dlgforn = oralialog(*Seerch For a stresk"”,Vies
Wi dgetAddCas {digFora.Shel l PopdounCal 1back Dol 14
dlgForn.Uidth = 2003

Inzert

B Tgal Scripk Properties
Fi]iihlw{;m\&hrﬂrm,aﬂl

iy S—

B Tonl Scripk

inthe street.snh tod script include:

Q eat ePushBut t onl t eng “ New sear ch”, DoNew) ;
QG eat ePushBUt t onl t enf“ Nouvel | e requét €”, DoNew)

QeatePushButtonltenf“H ghl i ght the street”, DoZoon)
QeatePushButtonl tenf“ A fi cher | a rue”, DoZoon)

GeateForn a og(“Search for astreet”, View Form
@ eat eFor ni al og(“ Recher che d une rue”, View Forn)

PopupSring(“Eter all or part of the nane of the
dreg tossrchfa”,)

PopupS ring(“Entrez | e nomou une parti e du nom
tkelareadeda”, “)

FopupMessage(“No streets found containing this word ")
PopupMessage(“ Aucune rue de |’ échantil 1 on de | a base
de donnee ne contient ce nat!”)

In addition to changing text strings in the script, you
should aso change the Tool Tip for the macro or tool
icon button in the View window. Open the Customize
Tool Scripts window (Options / Customize / Tool
Scripts), click the Propertiesicon and changethe Tool Tip.

For MBS Wndows operating systens, to change

Mi=E the character set for your conputer keyboard,

open the Keyboard Properties w ndow (Gon-
trol Panel / Keyboard) and add your |anguage.

File: IHDOUS Desktop'StreetRuss janmsn |
| Cinfece | I : .
Tcon: j Then switch your keyboard between charact er

sets by typing the specified keyboard shortcut.

(Mke sure the environnent you vant to type

Help I in, Wndows or M/X has focus before typing
the shortcut to change |anguages.)

Microl mages, | nc. (402)477-9554 « FAX (402)477-9559 « 206 S. 13th Street,

Lincoln, Nebraska 68508-2010 USA ¢ info@microimages.com ¢ April 2001

	Before Getting Started
	SML in the TNT Products
	Run VIEWSHED.SML
	Fundamentals of Scripting
	Variables and Constants
	Expressions and Statements
	Built-in Functions
	Online Function Help
	User-Defined Functions and Procedures
	Using Classes
	Member Inheritance and Type Checking
	Class Methods
	User Input
	Loops and Branches

	Script Development and Checking
	Toolbars and the SML Custom Menu
	Script Objects and Encryption
	Raster Objects
	Vector Objects
	Using the Vector Toolkit
	CAD and TIN Objects
	Region Objects
	Database Objects
	Converting Objects
	Sample Script: Extract Polygons
	Sample Script: Network Routing
	Including Scripts and Running Programs
	SML Layer in Display
	SML and GeoFormulas
	Creating Dialog Windows
	Creating a Simple Dialog Window
	Using Widgets To Build Dialog Windows
	Creating and Using a Drawing Area
	Creating a View in a Dialog Window
	Coordinate Systems in Views

	Movie Generation Scripts
	3D Simulation Scripts

	APPLIDATs
	Providing APPLIDAT Instructions
	BIOMASS2 APPLIDAT

	Tool Script and Macro Scripts
	Macro Script Setup
	Sample Macro Script: Zoom to Scale
	Sample Macro Script: Snapshot
	Tool Script Templates
	Sample Tool Script: Select Point
	Sample Tool Script: ViewMarks
	Sample Tool Script: Raster Profile
	Sample Tool Script: Area Statistics
	Sample Tool Script: Region Statistics
	Sample Tool Script: Run Browser
	Sample Tool Script: Find Streets
	Sample Tool Script: Flow Path
	Sample Tool Script: FRAGSTATS
	Sample Tool Script: Command Parser

	Index and MicroImages Product Information
	ATTACHMENTS: Release Notes Plates
	Sample Script: Extract Selected Polygons
	Sample Script: Farm to Market Routing
	Sample Script: Movie Generation Scripts
	Macro Script Setup
	Macro Script: Zoom to Map Scale
	Tool Script Templates
	Tool Script: ViewMarks
	Tool Script: Area Statistics
	Tool Script: Region Statistics
	Tool Script: Run Browser
	Tool Script: Find Streets
	Tool Script: Flow Path
	Tool Script: Run FRAGSTATS
	Tool Script: Fixed Colors (Command Parser)
	Localizing SML Scripts

